Skip to main content
Log in

Eigensolutions and expectation values of shifted-rotating Möbius squared oscillator

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper we have employed exact quantization rule and the Hellman–Feynman theorem to obtain bound states eigensolutions and expectation values of the shifted-rotating Möbius squared oscillator, and we have used the Pekeris-like approximation recipe to effect solution for bound states energy eigenspectra, and in solving the Riccati equation for the eigenfunctions, cases of Q ≠ 0 and Q = 0 were considered in our solutions. We have also applied our derived formulas to compute numerical values to the spectroscopic parameters of four diatomic molecules: CO, LiH, H2 and ICl. Our analysis showed that numerical results we obtained for potential parameters, bound states energy eigenspectra and expectation values are consistent with available data in the literature and that molecular interactions in CO, LiH, H2 and ICl are best described by improved Wei oscillator than by Morse oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C.S. Jia, J.Y. Liu, P.Q. Wang, Phys. Lett. A 372, 4779 (2008). https://doi.org/10.1016/j.physleta.2008.05.030

    Article  ADS  Google Scholar 

  2. F. Taskin, G. Kocal, Chin. Phys. B 19, 090314 (2010). https://doi.org/10.1088/1674-1056/19/9/090314

    Article  ADS  Google Scholar 

  3. R. Horchani, H. Jelassi, Chem. Phys. Lett. 753, 137583 (2020). https://doi.org/10.1016/j.cplett.2020.137583

    Article  Google Scholar 

  4. Y.P. Varshni, Phys. Rev. A 41, 4682 (1990). https://doi.org/10.1016/j.rinp.2020.103078

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Hassanabadi, S. Zarrinkamar, B.H. Yazarloo, Chin. Phys. B 22, 060202 (2013). https://doi.org/10.1088/1674-1056/22/6/060202

    Article  ADS  Google Scholar 

  6. I. Naseer, M.S. Abdelmonem, A. Abdel-Hady, Mol. Phys. 111, 1 (2013). https://doi.org/10.1080/00268976.2012.698026

    Article  ADS  Google Scholar 

  7. W. Lucha, F.F. Schöberl, Int. J. Mod. Phys. C 10, 607 (1999). https://doi.org/10.1142/s0129183199000450

    Article  ADS  Google Scholar 

  8. S.M. Ikhdair, Eur. Phys. J. A 39, 307 (2009). https://doi.org/10.1140/epja/i2008-10715-2

    Article  ADS  Google Scholar 

  9. H. Louis, B.I. Ita, N.I. Nzeata, Eur. Phys. J. Plus 134, 315 (2019). https://doi.org/10.1140/epjp/i2019-12835-3

    Article  Google Scholar 

  10. C.L. Pekeris, Phys. Rev. 45, 98 (1934). https://doi.org/10.1103/PhysRev.45.98

    Article  ADS  Google Scholar 

  11. R.L. Greene, C. Aldrich, Phys. Rev. A 14, 2363 (1976). https://doi.org/10.1103/PhysRevA.14.2363

    Article  ADS  Google Scholar 

  12. M. Hamzavi, A.A. Rajabi, H. Hassanabadi, Mol. Phys. 110, 389 (2012). https://doi.org/10.1080/00268976.2011.648962

    Article  ADS  Google Scholar 

  13. B.J. Falaye, K.J. Oyewumi, T.T. Ibrahim, M.A. Punyasema, C.A. Onate, Can. J. Phys. 91, 98 (2013). https://doi.org/10.1139/cjp-2012-0330

    Article  ADS  Google Scholar 

  14. X.Y. Gu, S.H. Dong, J. Math. Chem. 49, 2953 (2011). https://doi.org/10.1007/s10910-011-9877-5

    Article  Google Scholar 

  15. S.H. Dong, M. Cruz-Irrison, J. Math. Chem. 50, 881 (2012). https://doi.org/10.1007/s10910-011-9931-3

    Article  MathSciNet  Google Scholar 

  16. Z.Q. Ma, B.W. Xu, EPL 69, 685 (2005). https://doi.org/10.1209/epl/i2004-10418-8

    Article  ADS  Google Scholar 

  17. S.M. Ikhdair, R. Sever, J. Math. 45, 1137 (2009). https://doi.org/10.1007/s10910-008-9438-8

    Article  Google Scholar 

  18. S.M. Ikhdair, Chem. Phys. 361, 9 (2009). https://doi.org/10.1016/j.chemphys.2009.04.023

    Article  Google Scholar 

  19. B.J. Falaye, S.M. Ikhdair, M. Hamzavi, J. Theor. Appl. Phys. 9, 151 (2015). https://doi.org/10.1007/s40094-015-0173-9

    Article  ADS  Google Scholar 

  20. H. Yanar, A. Tas, M. Salti, O. Aydogdu, Eur. Phys. J. Plus 135, 292 (2020). https://doi.org/10.1140/epjp/s13360-020-00297-9

    Article  Google Scholar 

  21. H.M. Tang, G.C. Liang, L.H. Zhang, F. Zhao, C.S. Jia, Can. J. Chem. 92, 201 (2014). https://doi.org/10.1139/cjc-2013-0466

    Article  Google Scholar 

  22. U.S. Okorie, A.N. Ikot, E.O. Chukwuocha, G.J. Rampho, Results Phys. 17, 103078 (2020). https://doi.org/10.1016/j.rinp.2020.103078

    Article  Google Scholar 

  23. B.H. Yazarloo, H. Hassanabadi, S. Zharrinkamar, Eur. Phys. J. Plus 127, 51 (2012). https://doi.org/10.1140/epjp/i2013-13109-x

    Article  Google Scholar 

  24. U.S. Okorie, A.N. Ikot, M.C. Onyeaju, E.O. Chukwuocha, J. Mol. Model. 24, 289 (2018). https://doi.org/10.1007/s00894-018-3811-8

    Article  Google Scholar 

  25. A.N. Ikot, S. Zarrinkamar, E.J. Ibanga, E. Maghsoodi, H. Hassanabadi, Chin. Phys. C. 38, 013101 (2014). https://doi.org/10.1088/1674-1137/38/1/013101

    Article  ADS  Google Scholar 

  26. C.P. Onyenegecha, C.A. Onate, O.K. Echendu, A.A. Ibe, H. Hassanabadi, Eur. Phys. J. Plus 135, 289 (2020). https://doi.org/10.1140/epjp/s13360-020-00304-z

    Article  Google Scholar 

  27. C.S. Jia, Y.F. Diao, X.J. Liu, P.Q. Wang, J.Y. Liu, G.D. Zhang, J. Chem. Phys. 137, 014101 (2012). https://doi.org/10.1063/1.4731340

    Article  ADS  Google Scholar 

  28. F.J. Gordilo-Vázquez, J.A. Kunc, J. Appl. Phys. 84, 4693 (1998). https://doi.org/10.1063/1.368712

    Article  ADS  Google Scholar 

  29. M. Rafi, R. Altuwirqi, H. Farhan, I.A. Khan, Pramana. J. Phys. 68, 959 (2007). https://doi.org/10.1007/s12043-007-0095-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Eyube.

Appendix

Appendix

List of standard integrals used in the present work

$$ \int\limits_{{s_{n\,A} }}^{{s_{n\,B} }} {\frac{d\,s}{{\left( {a + b\,s} \right)\sqrt {\left( {s - s_{n\,A} } \right)\left( {s_{n\,B} - s} \right)} }} = \frac{\pi }{{\sqrt {\left( {a + b\,s_{n\,A} } \right)\left( {a + b\,s_{n\,B} } \right)} }}} \quad \left[ {14} \right] $$
(A.1)
$$ \int\limits_{{s_{n\,A} }}^{{s_{n\,B} }} {\frac{{\sqrt {\left( {s - s_{n\,A} } \right)\left( {s_{n\,B} - s} \right)} }}{{s\left( {1 + Q\,s} \right)}}d\,s = \pi \left\{ {\frac{{\sqrt {\left( {1 + Q\,s_{n\,A} } \right)\left( {1 + Q\,s_{n\,B} } \right)} }}{Q} - \frac{1}{Q} - \sqrt {s_{n\,A} \,s_{n\,B} } } \right\}} \quad \left[ {19} \right] $$
(A.2)
$$ \int\limits_{{s_{n\,A} }}^{{s_{n\,B} }} {\frac{s}{{\sqrt {\left( {s - s_{n\,A} } \right)\left( {s_{n\,B} - s} \right)} }}d\,s = \frac{\pi }{2}\left( {s_{n\,A} + s_{n\,B} } \right)} \quad \left[ {17} \right] $$
(A.3)
$$ \int\limits_{{s_{n\,A} }}^{{s_{n\,B} }} {\frac{d\,s}{{s\sqrt {\left( {s - s_{n\,A} } \right)\left( {s_{n\,B} - s} \right)} }} = \frac{\pi }{{\sqrt {s_{n\,A} \,s_{n\,B} } }}} \quad \left[ {17} \right] $$
(A.4)
$$ \int\limits_{{s_{n\,A} }}^{{s_{n\,B} }} {\frac{d\,s}{{\sqrt {\left( {s - s_{n\,A} } \right)\left( {s_{n\,B} - s} \right)} }} = \pi } \quad \left[ {17} \right] $$
(A.5)
$$ \int\limits_{{s_{n\,A} }}^{{s_{n\,B} }} {\frac{{\sqrt {\left( {s - s_{n\,A} } \right)\left( {s_{n\,B} - s} \right)} }}{s}d\,s = \pi \left\{ {\frac{1}{2}\left( {s_{n\,A} + s_{n\,B} } \right) - \sqrt {s_{n\,A} \,s_{n\,B} } } \right\}} \quad \left[ {17} \right] $$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyube, E.S., Ahmed, A.D. & Timtere, P. Eigensolutions and expectation values of shifted-rotating Möbius squared oscillator. Eur. Phys. J. Plus 135, 893 (2020). https://doi.org/10.1140/epjp/s13360-020-00915-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00915-6

Navigation