Skip to main content
Log in

Shannon information entropy in the presence of magnetic and Aharanov–Bohm (AB) fields

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this research article, quantum information-theoretic analysis of the class of Yukawa potential (CYP) has been considered in the presence of magnetic and Aharanov–Bohm (AB) fields both analytically. We solve the Schrodinger equation in the presence of external magnetic and AB fields for the CYP via the functional analysis approach to obtain the energy equation and wave function, respectively. The probability density is then obtained by squaring the wave function which is then used to obtain the Shannon entropy numerically. From our results, we note that the all-inclusive effect of the magnetic and AB fields influences the Shannon entropies such that negative values are observed, demonstrating that negative entropies exist which physically means that the probability densities are highly localized in this region. The variation in the Shannon entropy with the screening parameter \(\alpha\), magnetic and AB fields for the CYP is discussed. The Bialynicki-Birula, Mycielski inequality (BBM) uncertainty relation is also verified. The content of this research finds application in atomic and molecular physics, quantum chemistry and physics.

Graphic abstract

In this study, Shannon information entropy is investigated with the class of Yukawa potential in position and momentum spaces in the presence of magnetic and Aharanov–Bohm (AB) fields. The all-inclusive effect of the magnetic and AB fields influences the Shannon entropies such that negative values are observed, which physically means that the probability densities are highly localized in this region. The Shannon entropy measure satisfied the Bialynicki-Birula and Mycielski (BBM) uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)

    Article  Google Scholar 

  2. A. Renyi, in Proceedings of the 4th Symposium on Mathematics, Statistics and Probability, Berkeley University Press, Berkeley 1960.

  3. S. Kullberg, R.A. Leibler, Ann. Math Stat. 22, 79 (1951)

    Article  Google Scholar 

  4. C. Tsallis, J. Stat. Phys. 54, 479 (1988)

    Article  ADS  Google Scholar 

  5. O. Onicescu, C.R. Acad, Sci. Paris. A 263, 25 (1966)

    Google Scholar 

  6. S. López-Rosa, Information-theoretic measures of atomic and molecular systems. Ph.D. Thesis, University of Granada, Spain 2010.

  7. J.S. Dehesa, S. Lopez-Rosa, A. Martínez-Finkelshtein, R.J. Yanez, Int. J. Quantum Chem. 110, 1529 (2010)

    Article  Google Scholar 

  8. A. Nagy, Int. J. Quantum Chem. 115, 1392 (2015)

    Article  Google Scholar 

  9. S. Kullberg, Information Theory and Statistics (Wiley, New York, 1959).

    Google Scholar 

  10. P. Bernaola-Galvan, I. Carpena, J.L. Oliver, R. Roman-Roldan, H.E. Stanley, Phys. Rev. Lett. 85, 1342 (2000)

    Article  ADS  Google Scholar 

  11. G. Chechik, V. Sharma, U. Shalit, S. Bengio, J. Mach. Learn. Res. 11, 1109 (2010)

    MathSciNet  Google Scholar 

  12. N. Abramson, Information Theory and Coding (Mc GrawHill, New York, 1963).

    Google Scholar 

  13. P. Faratin, C. Sierra, N.R. Jennings, Artif. Intell. 142, 205 (2002)

    Article  Google Scholar 

  14. C. Zhang, H. Fu, Pattern Recognit. Lett. 27, 1307 (2006)

    Article  Google Scholar 

  15. S. B. Sears, Applications of Information Theory in Chemical Physics, Ph.D. Thesis, University of North Carolina, Chapel Hill 1980.

  16. M. Wilson, Nanotechnology, Basic Science and Emerging Technologies (CRC Press, New York, 2003).

    Google Scholar 

  17. P. Hohenberg, W. Kohn, Phys. Rev. 136, 864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  18. R.G. González-Férez, J.S. Dehesa, Phys. Rev. Lett. 91, 113001 (2003)

    Article  ADS  Google Scholar 

  19. R.G. González-Férez, J.S. Dehesa, Eur. Phys. J. D 32, 39 (2005)

    Article  ADS  Google Scholar 

  20. I.V. Toranzo, J.S. Dehesa, Eur. Phys. Lett. 113, 48003 (2016)

    Article  ADS  Google Scholar 

  21. O. Gühne, M. Lewenstein, Phy. Rev. A 70, 022316 (2004)

    Article  ADS  Google Scholar 

  22. F. Franchini, A.R. Its, V.E. Korepin, J. Phys. A: Math. Theor. 41, 025302 (2008)

    Article  ADS  Google Scholar 

  23. Q. Dong, A.J. Torres-Arenas, G.H. Sun, W.C. Qiang, S.H. Dong, Front. Phys. 14, 21603 (2019)

    Article  ADS  Google Scholar 

  24. Q. Dong, G.H. Sun, M. Toutounji, S.H. Dong, Optik Int. J. Light Electron Opt. 201, 163487 (2020)

    Article  Google Scholar 

  25. W.C. Qiang, G.H. Sun, Q. Dong, S.H. Dong, Phys. Rev. A 98, 022320 (2018)

    Article  ADS  Google Scholar 

  26. W.C. Qiang, Q. Dong, M.A. Mercado Sanchez, G.H. Sun, S.H. Dong, Quantum Inf. Process. 18, 314 (2019)

    Article  ADS  Google Scholar 

  27. A.J. Torres-Arenas, E.O. López-Zúñiga, J.A. Saldaña-Herrera, Q. Dong, G.H. Sun, S.H. Dong, Chin. Phys. B 28, 070301 (2019)

    Article  ADS  Google Scholar 

  28. E. Romera, F. de Los Santos, Phys. Rev. A 78, 013837 (2008)

    Article  ADS  Google Scholar 

  29. E. Romera, A. Nagy, Phys. Lett. A 372, 4918 (2008)

    Article  ADS  Google Scholar 

  30. V. Majernik, T. Opatrny, J. Phys. A: Math. Gen. 29, 2187 (1996)

    Article  ADS  Google Scholar 

  31. J.S. Dehesa, W. Assche, R.J. Yanez, Methods Appl. Math. 4, 91 (1997)

    Google Scholar 

  32. P.O. Amadi, A.N. Ikot, A.T. Ngiangia, U.S. Okorie, G.J. Rampho, H.Y. Abdullah, Int J Quantum Chem. 120, e26246 (2020)

    Article  Google Scholar 

  33. A.N. Ikot, G.J. Rampho, P.O. Amadi, M.J. Sithole, U.S. Okorie, M.I. Lekala, Euro. Phys. J. Plus 135, 6 (2020)

    Article  Google Scholar 

  34. W.A. Yahya, K.J. Oyewumi, K.D. Sen, Indian J. Chem. 53A, 1307 (2014)

    Google Scholar 

  35. W.A. Yahya, K.J. Oyewumi, K.D. Sen, Int. J. Quantum Chem. 115, 1543 (2014)

    Article  Google Scholar 

  36. J.O.A. Idiodi, C.A. Onate, Commun. Theor. Phys. 66, 269 (2016)

    Article  ADS  Google Scholar 

  37. G.H. Sun, S.H. Dong, Phys. Scr. 87, 045003 (2013)

    Article  ADS  Google Scholar 

  38. C.N. Isonguyo, K.J. Oyewumi, O.S. Oyun, Int J Quantum Chem. 118, e25620 (2018)

    Article  Google Scholar 

  39. S.H. Patil, K.D. Sen, Int. J. Quantum Chem. 2007, 107 (1864)

    Google Scholar 

  40. B.J. Falaye, F.A. Serrano, S.H. Dong, Phys. Lett. A 380, 267 (2016)

    Article  ADS  Google Scholar 

  41. C.A. Onate, J.O. Ojonubah, J Theor Appl Phys 10, 21 (2016)

    Article  Google Scholar 

  42. M. Hamzavi, K.E. Thylwe, A.A. Rajabi, Commun. Theor. Phys. 60, 1 (2013)

    Article  ADS  Google Scholar 

  43. A.I. Ahmadov, M. Demirci, S.M. Aslanova, M.F. Mustamin, Phys. Lett. A 384, 126372 (2020)

    Article  MathSciNet  Google Scholar 

  44. K.R. Purohit, A. Kumar Rai, R.H. Parmar, AIP Conf. Proc. 2220, 120004 (2020)

    Article  Google Scholar 

  45. I. Bialynicki-Birula, J. Mycielski, Commun. Math. Phys. 44, 129 (1975)

    Article  ADS  Google Scholar 

  46. A. Guerrero, J. Sanchez-Moreno, J.S. Dehesa, J. Phys. A Math. Theor. 43, 305203 (2010)

    Article  Google Scholar 

  47. C.O. Edet, P.O. Amadi, M.C. Onyeaju, U.S. Okorie, R. Sever, G.J. Rampho, Y. Hewa Abdullah, H. Idris Salih, A.N. Ikot, J Low Temp Phys 202, 83 (2021)

    Article  ADS  Google Scholar 

  48. C.O. Edet, A.N. Ikot, M.C. Onyeaju, U.S. Okorie, G.J. Rampho, M.L. Lekala, S. Kaya, Phys. E (2021). https://doi.org/10.1016/j.physe.2021.114710

    Article  Google Scholar 

  49. G.J. Rampho, A.N. Ikot, C.O. Edet, U.S. Okorie, Mol. Phys. (2020). https://doi.org/10.1080/00268976.2020.1821922

    Article  Google Scholar 

  50. A.N. Ikot, C.O. Edet, P.O. Amadi, U.S. Okorie, G.J. Rampho, H.Y. Abdullah, Eur. Phys. J. D 74, 159 (2020)

    Article  ADS  Google Scholar 

  51. Edet, C. (2020). Effects of Magnetic and Aharanov–Bohm (AB) Fields on the Energy Spectra of the Yukawa Potential. arXiv preprint arXiv, 2012.08644.

  52. A.N. Ikot, U.S. Okorie, G. Osobonye, P.O. Amadi, C.O. Edet, M.J. Sithole, G.J. Rampho, R. Sever, Heliyon 6, e03738 (2020)

    Article  Google Scholar 

  53. R.L. Greene, C. Aldrich, Phys. Rev. A 14, 2363 (1976)

    Article  ADS  Google Scholar 

  54. C.O. Edet, P.O. Okoi, S.O. Chima, Rev. Bras. Ens. Fis. 42, e20190083 (2019)

    Article  Google Scholar 

  55. P.O. Okoi, C.O. Edet, T.O. Magu, Rev. Mex. Fis. 66, 1 (2020)

    Google Scholar 

  56. C.O. Edet, P.O. Okoi, Rev. Mex. Fis. 65, 333 (2019)

    Article  Google Scholar 

  57. C.O. Edet, A.N. Ikot, J. Low Temp. Phys. (2021). https://doi.org/10.1007/s10909-021-02577-9

    Article  Google Scholar 

  58. C.O. Edet, K.O. Okorie, H. Louis, N.A. Nzeata-Ibe, Indian J. Phys. 94, 243 (2020)

    Article  ADS  Google Scholar 

  59. C.O. Edet, P.O. Okoi, A.S. Yusuf, P.O. Ushie, P.O. Amadi, Indian J. Phys. 95, 471 (2021). https://doi.org/10.1007/s12648-019-01650-0

    Article  ADS  Google Scholar 

  60. B.I. Ita, H. Louis, O.U. Akakuru, N.A. Nzeata-Ibe, A.I. Ikeuba, T.O. Magu, P.I. Amos, C.O. Edet, Bulg. J. Phys. 45, 323 (2018)

    Google Scholar 

  61. C.O. Edet, U.S. Okorie, G. Osobonye, A.N. Ikot, G.J. Rampho, R. Sever, J. Math. Chem. 58, 989 (2020)

    Article  MathSciNet  Google Scholar 

  62. U.S. Okorie, A.N. Ikot, C.O. Edet, I.O. Akpan, R. Sever, R. Rampho, J. Phys. Commun. 3, 095015 (2019)

    Article  Google Scholar 

  63. U.S. Okorie, C.O. Edet, A.N. Ikot, G.J. Rampho, R. Sever, Ind. J. Phys. 95, 411 (2021). https://doi.org/10.1007/s12648-019-01670-w

    Article  Google Scholar 

  64. S.H. Dong, Factorization Method in Quantum Mechanics (Springer, Armsterdam, 2007).

    Book  MATH  Google Scholar 

  65. S. Dong, G.-H. Sun, S.-H. Dong, J.P. Draayer, Phys Lett. A 378, 124 (2014)

    Article  ADS  Google Scholar 

  66. W.C. Qiang, S.-H. Dong, Phys. Scr. 79, 045004 (2009)

    Article  ADS  Google Scholar 

  67. W.C. Qiang, S.H. Dong, Phys. Lett. A 368, 13 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  68. S.H. Dong, W.C. Qiang, G.H. Sun, V.B. Bezerra, J. Phys. A Math. Theor. 40, 10535 (2007)

    Article  ADS  Google Scholar 

  69. S.S. Dong, J. García-Ravelo, S.H. Dong, Phys. Scr. 76, 393 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  70. W.C. Qiang, S.H. Dong, Phys. Lett. A 372, 4789 (2008)

    Article  ADS  Google Scholar 

  71. G.-H. Sun, S.-H. Dong, N. Saad, Ann. Phys. 525, 934 (2013)

    Article  MathSciNet  Google Scholar 

  72. O. Olendski, Phys. Lett. A 383, 1110 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors dedicate this work to Late Professor Eno Ekpo Eno. We also thank the anonymous referees for the careful reading and the suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. O. Edet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edet, C.O., Ikot, A.N. Shannon information entropy in the presence of magnetic and Aharanov–Bohm (AB) fields. Eur. Phys. J. Plus 136, 432 (2021). https://doi.org/10.1140/epjp/s13360-021-01438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01438-4

Navigation