Skip to main content
Log in

Squeezing in the quantum Rabi model with parametric nonlinearity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The squeezing effect arising in the interacting qubit-oscillator system is studied with the presence of a parametric oscillator in the Rabi model. To solve the system, we employ the generalized rotating wave approximation which works well in the wide range of coupling strength as well as detuning. The analytically derived approximate energy spectrum portrays good agreement with the numerically determined spectrum of the Hamiltonian. For the initial state of the bipartite system, the dynamical evolution of the reduced density matrix corresponding to the oscillator is obtained by partial tracing over the qubit degree of freedom. The oscillator’s reduced density matrix yields the nonnegative phase space quasi-probability distribution known as Husimi Q-function which is utilized to compute the quadrature variance. It is noticed that the squeezing produced in the oscillator sector gets reduced with increasing coupling strength. We demonstrate the role of the parametric term to obtain adequate squeezing in the strong coupling regime. We also study the revival–collapse phenomenon and the generation of squeezed coherent state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Mandel, Phys. Rev. Lett. 49, 136 (1982)

    Article  ADS  Google Scholar 

  2. C.M. Caves, Phys. Rev. D 23, 1693 (1981)

    Article  ADS  Google Scholar 

  3. M.A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, W.P. Bowen, Nat. Photon. 7, 229 (2013)

    Article  ADS  Google Scholar 

  4. S.L. Braunstein, P.V. Loock, Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  Google Scholar 

  5. J. Aasi, J. Abadie, B.P. Abbott et al., Nat. Photon. 7, 613 (2013)

    Article  ADS  Google Scholar 

  6. D. F. Walls, G. J. Milburn, Quantum Optics, Springer Science & Business Media (2007)

  7. H. Yuen, J. Shapiro, IEEE Trans. Inf. Theory 24, 657 (1978)

    Article  ADS  Google Scholar 

  8. R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz, J.F. Valley, Phys. Rev. Lett. 55, 2409 (1985)

    Article  ADS  Google Scholar 

  9. R.M. Shelby, M.D. Levenson, S.H. Perlmutter, R.G. DeVoe, D.F. Walls, Phys. Rev. Lett. 57, 691 (1986)

    Article  ADS  Google Scholar 

  10. L.-A. Wu, H.J. Kimble, J.L. Hall, H. Wu, Phys. Rev. Lett. 57, 2520 (1986)

    Article  ADS  Google Scholar 

  11. P. Meystre, M.S. Zubairy, Phys. Lett. A 89, 390 (1982)

    Article  ADS  Google Scholar 

  12. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  13. J.R. Kukliński, J.L. Madajczyk, Phys. Rev. A 37, 3175(R) (1988)

    Article  ADS  Google Scholar 

  14. C.C. Gerry, H. Ghosh, Phys. Lett. A 229, 17 (1997)

    Article  ADS  Google Scholar 

  15. I.I. Rabi, Phys. Rev. 49, 324 (1936)

    Article  ADS  Google Scholar 

  16. I.I. Rabi, Phys. Rev. 51, 652 (1937)

    Article  ADS  Google Scholar 

  17. P. Lais, T. Steimle, Opt. Commun. 78, 346 (1990)

    Article  ADS  Google Scholar 

  18. I. Pietikäinen, S. Danilin, K.S. Kumar, J. Tuorila, G.S. Paraoanu, J. Low Temp. Phys. 191, 354 (2018)

    Article  ADS  Google Scholar 

  19. R. Chakrabarti, B.V. Jenisha, Phys. A 435, 95 (2015)

    Article  Google Scholar 

  20. R. Chakrabarti, V. Yogesh, J. Phys. B 49, 075502 (2016)

    Article  ADS  Google Scholar 

  21. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  22. G. Günter, A.A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, Nature 458, 178 (2009)

    Article  ADS  Google Scholar 

  23. T. Niemczyk, F. Deppe, H. Huebl, E.P. Menzel, F. Hocke, M.J. Schwarz, J.J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, R. Gross, Nat. Phys. 6, 772 (2010)

    Article  Google Scholar 

  24. P. Forn-Díaz, J. Lisenfeld, D. Marcos, J.J. García-Ripoll, E. Solano, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. Lett. 105, 237001 (2010)

    Article  ADS  Google Scholar 

  25. P. Cristofolini, G. Christmann, S.I. Tsintzos, G. Deligeorgis, G. Konstantinidis, Z. Hatzopoulos, P.G. Savvidis, J.J. Baumberg, Science 336, 704 (2012)

    Article  ADS  Google Scholar 

  26. G. Scalari, C. Maissen, D. Turčinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, J. Faist, Science 335, 1323 (2012)

    Article  ADS  Google Scholar 

  27. Z.-L. Xiang, S. Ashhab, J.Q. You, F. Nori, Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  28. I. Pietikäinen, S. Danilin, K. Kumar, A. Vepsäläinen, D. Golubev, J. Tuorila, G.S. Paraoanu, Phys. Rev. B 96, 020501(R) (2017)

    Article  ADS  Google Scholar 

  29. C. Ciuti, G. Bastard, I. Carusotto, Phys. Rev. B 72, 115303 (2005)

    Article  ADS  Google Scholar 

  30. J. Bourassa, J.M. Gambetta, A.A. Abdumalikov Jr., O. Astafiev, Y. Nakamura, A. Blais, Phys. Rev. A 80, 032109 (2009)

    Article  ADS  Google Scholar 

  31. J. Casanova, G. Romero, I. Lizuain, J.J. García-Ripoll, E. Solano, Phys. Rev. Lett. 105, 263603 (2010)

    Article  ADS  Google Scholar 

  32. E.K. Irish, J. Gea-Banacloche, Phys. Rev. B 89, 085421 (2014)

    Article  ADS  Google Scholar 

  33. J.S. Pedernales, I. Lizuain, S. Felicetti, G. Romero, L. Lamata, E. Solano, Sci. Rep. 5, 15472 (2015)

    Article  ADS  Google Scholar 

  34. C. Rigetti, J.M. Gambetta, S. Poletto, B.L.T. Plourde, J.M. Chow, A.D. Córcoles, J.A. Smolin, S.T. Merkel, J.R. Rozen, G.A. Keefe, M.B. Rothwell, M.B. Ketchen, M. Steffen, Phys. Rev. B 86, 100506(R) (2012)

    Article  ADS  Google Scholar 

  35. E. Solano, Physics 4, 68 (2011)

    Article  Google Scholar 

  36. B. Peropadre, P. Forn-Díaz, E. Solano, J.J. García-Ripoll, Phys. Rev. Lett. 105, 023601 (2010)

    Article  ADS  Google Scholar 

  37. D. Braak, Phys. Rev. Lett. 107, 100401 (2011)

    Article  ADS  Google Scholar 

  38. J.Q. You, F. Nori, Nature 474, 589 (2011)

    Article  ADS  Google Scholar 

  39. P. Nataf, C. Ciuti, Phys. Rev. Lett. 107, 190402 (2011)

    Article  ADS  Google Scholar 

  40. I. Pietikäinen, J. Tuorila, D.S. Golubev, G.S. Paraoanu, Phys. Rev. A 99, 063828 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  41. D. Ballester, G. Romero, J.J. García-Ripoll, F. Deppe, E. Solano, Phys. Rev. X 2, 021007 (2012)

    Google Scholar 

  42. C. Joshi, E.K. Irish, T.P. Spiller, Sci. Rep. 7, 45587 (2017)

    Article  ADS  Google Scholar 

  43. Y.-Y. Zhang, Phys. Rev. A 94, 063824 (2016)

    Article  ADS  Google Scholar 

  44. E.K. Irish, J. Gea-Banacloche, I. Martin, K.C. Schwab, Phys. Rev. B 72, 195410 (2005)

    Article  ADS  Google Scholar 

  45. S. Ashhab, F. Nori, Phys. Rev. A 81, 042311 (2010)

    Article  ADS  Google Scholar 

  46. E.K. Irish, Phys. Rev. Lett. 99, 173601 (2007)

    Article  ADS  Google Scholar 

  47. W. Schleich, Quantum Optics in Phase Space (Wiley, 2011)

  48. R.L. Fulton, M. Gouterman, J. Chem. Phys. 35, 1059 (1961)

    Article  ADS  Google Scholar 

  49. M. Wagner, J. Phys. A 17, 2319 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  50. H. Paul, Ann. Phys. (Berl.) 467, 290 (1963)

    Article  ADS  Google Scholar 

  51. B.W. Shore, P.L. Knight, J. Mod. Opt. 40, 1195 (1993)

    Article  ADS  Google Scholar 

  52. D. Stoler, Phys. Rev. D 1, 3217 (1970)

    Article  ADS  Google Scholar 

  53. D. Stoler, Phys. Rev. Lett. 33, 1397 (1974)

    Article  ADS  Google Scholar 

  54. K. Wodkiewicz, J.H. Eberly, J. Opt. Soc. Am. B 2, 458 (1985)

    Article  ADS  Google Scholar 

  55. J.M. Cerveró, J.D. Lejarreta, Quant. Semiclass. Opt. 9, L5 (1997)

    Article  ADS  Google Scholar 

  56. R. Gutiérrez-Jáuregui, G.S. Agarwal, Phys. Rev. A 103, 023714 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  57. C. Zhu, L. Ping, Y. Yang, G.S. Agarwal, Phys. Rev. Lett. 124, 073602 (2020)

    Article  ADS  Google Scholar 

  58. L. Duan, Y.-F. Xie, Q.-H. Chen, Sci. Rep. 9, 18353 (2019)

    Article  ADS  Google Scholar 

  59. K.M. Ng, C.F. Lo, K.L. Liu, Eur. Phys. J. D 6, 119 (1999)

    Article  ADS  Google Scholar 

  60. R.J.A. Rico, F.H. Maldonado-Villamizar, B.M. Rodriguez-Lara, Phys. Rev. A 101, 063825 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  61. K.B. Wolf, Rev. Mex. Fís. E 56, 83 (2010)

    MathSciNet  Google Scholar 

  62. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Elsevier/Academic Press, Amsterdam, 2007)

    MATH  Google Scholar 

  63. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  64. G.E. Andrews, R. Askey, R. Roy, Special Functions Encyclopedia of Mathematics and Its Applications. (Cambridge University Press, Cambridge, 1999).

    Book  MATH  Google Scholar 

  65. A. Sugita, H. Aiba, Phys. Rev. E 65, 036205 (2002)

    Article  ADS  Google Scholar 

  66. G.-L. Ingold, A. Wobst, C. Aulbach, P. Hänggi, Anderson Localization and Its Ramifications (Springer, Berlin, 2003).

    Google Scholar 

  67. R. Tanaś, A. Miranowicz, T. Gantsog, Phys. Scr. T48, 53 (1993)

    Article  ADS  Google Scholar 

  68. S. M. Barnett, P. M. Radmore, Methods in Theoretical Quantum Optics, Oxford Series in Optical and Imaging Sciences, Oxford University Press, Oxford (2002)

  69. A. Lukš, V. Peřinová, J. Peřina, Opt. commun. 67, 149 (1988)

    Article  ADS  Google Scholar 

  70. A. Lukš, V. Peřinová, Z. Hradil, Acta Phys. Pol. A 74, 713 (1988)

    Google Scholar 

  71. A. Miranowicz, M. Bartkowiak, X. Wang, Y.-X. Liu, F. Nori, Phys. Rev. A 82, 013824 (2010)

    Article  ADS  Google Scholar 

  72. J. Ma, X. Wang, C.P. Sun, F. Nori, Phys. Rep. 509, 89 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  73. D. Zueco, G.M. Reuther, S. Kohler, P. Hänggi, Phys. Rev. A 80, 033846 (2009)

    Article  ADS  Google Scholar 

  74. H. Araki, E.H. Lieb, Commun. Math. Phys. 18, 160 (1970)

    Article  ADS  Google Scholar 

  75. V.V. Dodonov, O.V. Man’ko, V.I. Man’ko, A. Wünsche, J. Mod. Opt. 47, 633 (2000)

    Article  ADS  Google Scholar 

  76. P. Král, J. Mod. Opt. 37, 889 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Sanjay Kumar for his helpful comments and encouragement. We would also like to thank the referees for their suggestions. One of us (PM) acknowledges the financial support from DST (India) through the INSPIRE Fellowship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yogesh.

Appendices

Appendix A

The integrals employed to arrive at (28) are

$$\begin{aligned}&\int _{0}^{\infty } \mathrm {d}|\beta | \; |\beta | \exp \left( -|\beta |^{2}-\frac{\nu }{2\mu }(\beta ^{2}+\beta ^{*2}) \mp \frac{\eta }{\mu } (\beta + \beta ^{*}) \right) \mathrm {H}_{n}\left( i \frac{\beta _{\pm }^{*}}{\sqrt{2 \mu \nu }}\right) \mathrm {H}_{m}\left( -i \frac{\beta _{\pm }}{\sqrt{2 \mu \nu }}\right) \nonumber \\&\quad = \frac{\mu }{\tau _{_{\theta }}} (-1)^{m} \left( \pm i \frac{2 \eta (\mu -\nu )}{\sqrt{2\mu \nu }}\right) ^{n+m} \sum _{k=0}^{n} \sum _{\ell =0}^{m} \left( \pm \frac{\nu \sqrt{\mu \tau _{_{\theta }}}}{2\eta (\mu -\nu )}\right) ^{k+\ell } k! \ell ! \; \left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}m\\ \ell \end{array}}\right) \nonumber \\&\qquad \times \exp (i\theta (k-\ell )) \sum _{p=\lfloor \frac{k+1}{2} \rfloor }^{n} \sum _{q=\lfloor \frac{\ell }{2} \rfloor }^{m} \left( \frac{2}{ \nu \tau _{_\theta }}\right) ^{p+q} \frac{(2p+2q+1-k-\ell )! }{p!q!} \left( {\begin{array}{c}p\\ k-p\end{array}}\right) \left( {\begin{array}{c}q\\ \ell -q\end{array}}\right) \nonumber \\&\qquad \times \exp \left( -2i\theta (p-q)\right) \mathrm {H}_{k+\ell -2p-2q-2} \left( \pm \frac{\eta \cos \theta }{\sqrt{\mu \tau _{_\theta }}} \right) . \end{aligned}$$
(A.1)

Appendix B

To obtain the weight function in (34), we make use of the following integrals

$$\begin{aligned}&\int \mathrm {d}^{2}\beta \; \beta ^{k} \; \exp \left( -|\beta |^{2}-\frac{\nu }{2\mu }(\beta ^{2}+\beta ^{*2}) \mp \frac{\eta }{\mu } (\beta + \beta ^{*}) \right) \mathrm {H}_{n}\left( i \frac{\beta _{\pm }^{*}}{\sqrt{2 \mu \nu }}\right) \mathrm {H}_{m}\left( -i \frac{\beta _{\pm }}{\sqrt{2 \mu \nu }}\right) \nonumber \\&\quad = \frac{\pi }{2}\, \mu \, i^{n} \, (-i)^{m} \, \sqrt{ n! m!} \left( \frac{2 \mu }{\nu }\right) ^{\frac{n+m}{2}} \exp \left( \frac{\eta ^{2}}{\mu } (\mu - \nu )\right) \left( G^{(k,+)}_{n,m} \pm G^{(k,-)}_{n,m} \right) . \end{aligned}$$
(B.1)

We also note that when \(k=0\) in the above integrals, the finite summation series \(G^{(k,\pm )}_{n,m}\) takes the values \(G^{(0,+)}_{n,m} = 2 \; \delta _{n,m}\) and \(G^{(0,-)}_{n,m} = 0\).

$$\begin{aligned} I_{n,m}^{(k,\ell )}\equiv & {} \int \mathrm {d}^{2}\beta \; \beta ^{k} \beta ^{*\ell } \exp \left( -|\beta |^{2}-\frac{\nu }{2\mu }(\beta ^{2}+\beta ^{*2}) \right) \mathrm {H}_{n}\left( i \frac{\beta ^{*}}{\sqrt{2 \mu \nu }}\right) \mathrm {H}_{m}\left( -i \frac{\beta }{\sqrt{2 \mu \nu }}\right) \nonumber \\= & {} \pi \; \mu \; i^{n}(-i)^{m} n! m! \left( \frac{\mu \nu }{2}\right) ^{\frac{k+\ell }{2}} \sum _{p=0}^{n} \sum _{q=0}^{m} \frac{1}{p!q!} \left( {\begin{array}{c}p\\ n-p\end{array}}\right) \left( {\begin{array}{c}q\\ m-q\end{array}}\right) \sum _{s=0}^{\min (\ell +2p-n,k+2q-m)} \left( \frac{2 \mu }{\nu } \right) ^{s} s! \quad \nonumber \\&\times \left( {\begin{array}{c}2p+\ell -n\\ s\end{array}}\right) \left( {\begin{array}{c}k+2q-m\\ s\end{array}}\right) \mathrm {H}_{k+2q-m-s}(0) \mathrm {H}_{\ell +2p-n-s}(0). \end{aligned}$$
(B.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yogesh, V., Maity, P. Squeezing in the quantum Rabi model with parametric nonlinearity. Eur. Phys. J. Plus 136, 571 (2021). https://doi.org/10.1140/epjp/s13360-021-01496-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01496-8

Navigation