Skip to main content
Log in

Strangeness-neutral equation of state for QCD with a critical point

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present a strangeness-neutral equation of state for QCD that exhibits critical behavior and matches lattice QCD results for the Taylor-expanded thermodynamic variables up to fourth order in \(\mu _B/T\). It is compatible with the SMASH hadronic transport approach and has a range of temperatures and baryonic chemical potentials relevant for phase II of the Beam Energy Scan at RHIC. We provide an updated version of the software BES-EoS, which produces an equation of state for QCD that includes a critical point in the 3D Ising model universality class. This new version also includes isentropic trajectories and the critical contribution to the correlation length. Since heavy-ion collisions have zero global net-strangeness density and a fixed ratio of electric charge to baryon number, the BES-EoS is more suitable to describe this system. Comparison with the previous version of the EoS is thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. As in Ref. [46], we assume the transition line to be a parabola and utilize the curvature parameter \(\kappa =-0.0149\) from Ref. [4]. Recent results from lattice QCD [33, 58] are consistent with this value and predict the next to leading order parameter \(\kappa _4\) to be consistent with 0 within errors.

References

  1. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006). https://doi.org/10.1038/nature05120. arXiv:hep-lat/0611014 [hep-lat]

    Article  ADS  Google Scholar 

  2. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo (collaboration Wuppertal-Budapest), JHEP 09, 073 (2010). https://doi.org/10.1007/JHEP09(2010)073, arXiv:1005.3508 [hep-lat]

  3. G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, JHEP 04, 001 (2011). https://doi.org/10.1007/JHEP04(2011)001. arXiv:1102.1356 [hep-lat]

    Article  ADS  Google Scholar 

  4. R. Bellwied, S. Borsanyi, Z. Fodor, J. Günther, S.D. Katz, C. Ratti, K.K. Szabo, Phys. Lett. B 751, 559 (2015). https://doi.org/10.1016/j.physletb.2015.11.011. arXiv:1507.07510 [hep-lat]

    Article  ADS  Google Scholar 

  5. J.N. Guenther (2020), arXiv:2010.15503 [hep-lat]

  6. M. Stephanov, Phys. Rev. Lett. 107, 052301 (2011). https://doi.org/10.1103/PhysRevLett.107.052301. arXiv:1104.1627 [hep-ph]

    Article  ADS  Google Scholar 

  7. C. Ratti, M.A. Thaler, W. Weise (2006), arXiv:nucl-th/0604025

  8. R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, R. Rougemont, Phys. Rev. D 96 (2017). https://doi.org/10.1103/PhysRevD.96.096026, arXiv:1706.00455 [nucl-th]

  9. C. Ratti, Rep. Prog. Phys. 81, 096026 (2018). https://doi.org/10.1088/1361-6633/aabb97. arXiv:1804.07810 [hep-lat]

    Article  MathSciNet  Google Scholar 

  10. A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, N. Xu, Phys. Rep. 853, 1 (2020). https://doi.org/10.1016/j.physrep.2020.01.005. arXiv:1906.00936 [nucl-th]

    Article  ADS  Google Scholar 

  11. V. Dexheimer, J. Noronha, J. Noronha-Hostler, C. Ratti, N. Yunes (2020), arXiv:2010.08834 [nucl-th]

  12. A. Monnai, B. Schenke, C. Shen (2021), arXiv:2101.11591 [nucl-th]

  13. S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo, JHEP 11, 077 (2010). https://doi.org/10.1007/JHEP11(2010)077. arXiv:1007.2580 [hep-lat]

    Article  ADS  Google Scholar 

  14. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabo, Phys. Lett. B 730, 99 (2014). https://doi.org/10.1016/j.physletb.2014.01.007. arXiv:1309.5258 [hep-lat]

    Article  ADS  Google Scholar 

  15. A. Bazavov et al. (collaboration HotQCD) Phys. Rev. D 90 (2014). https://doi.org/10.1103/PhysRevD.90.094503arXiv:1407.6387 [hep-lat]

  16. S. Borsanyi, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo, JHEP 08, 053 (2012). https://doi.org/10.1007/JHEP08(2012)053. arXiv:1204.6710 [hep-lat]

    Article  ADS  Google Scholar 

  17. A. Bazavov et al., Phys. Rev. D 95, 054504 (2017). https://doi.org/10.1103/PhysRevD.95.054504. arXiv:1701.04325 [hep-lat]

    Article  ADS  Google Scholar 

  18. J. Gunther, R. Bellwied, S. Borsanyi, Z. Fodor, S.D. Katz, A. Pasztor, C. Ratti, in Proceedings, 12th Conference on Quark Confinement and the Hadron Spectrum (Confinement XII): Thessaloniki, Greece, EPJ Web Conference 137, 07008 (2017). https://doi.org/10.1051/epjconf/201713707008arXiv:1607.02493 [hep-lat]

  19. R. Bellwied, S. Borsanyi, Z. Fodor, S. Katz, A. Pasztor, C. Ratti, K. Szabo, Phys. Rev. D 92, 114505 (2015). https://doi.org/10.1103/PhysRevD.92.114505. arXiv:1507.04627 [hep-lat]

    Article  ADS  Google Scholar 

  20. J. Günther, R. Bellwied, S. Borsanyi, Z. Fodor, S.D. Katz, A. Pasztor, C. Ratti, EPJ Web Conf. 137, 07008 (2017). https://doi.org/10.1051/epjconf/201713707008

    Article  Google Scholar 

  21. S. Borsanyi, Z. Fodor, J.N. Guenther, S.K. Katz, K.K. Szabo, A. Pasztor, I. Portillo, C. Ratti, JHEP 10, 205 (2018). https://doi.org/10.1007/JHEP10(2018)205. arXiv:1805.04445 [hep-lat]

    Article  ADS  Google Scholar 

  22. A. Bazavov et al., Phys. Rev. D 101, 074502 (2020). https://doi.org/10.1103/PhysRevD.101.074502. arXiv:2001.08530 [hep-lat]

    Article  ADS  Google Scholar 

  23. S. Borsányi, Z. Fodor, J.N. Guenther, R. Kara, S.D. Katz, P. Parotto, A. Pásztor, C. Ratti, K.K. Szabó (2021), arXiv:2102.06660 [hep-lat]

  24. J. Noronha-Hostler, P. Parotto, C. Ratti, J.M. Stafford, Phys. Rev. C 100, 064910 (2019). https://doi.org/10.1103/PhysRevC.100.064910. arXiv:1902.06723 [hep-ph]

    Article  ADS  Google Scholar 

  25. A. Monnai, B. Schenke, C. Shen, Phys. Rev. C 100, 024907 (2019). https://doi.org/10.1103/PhysRevC.100.024907. arXiv:1902.05095 [nucl-th]

    Article  ADS  Google Scholar 

  26. M. D’Elia, G. Gagliardi, F. Sanfilippo, Phys. Rev. D 95, 094503 (2017). https://doi.org/10.1103/PhysRevD.95.094503. arXiv:1611.08285 [hep-lat]

    Article  ADS  Google Scholar 

  27. S. Borsányi, Z. Fodor, M. Giordano, S.D. Katz, A. Pasztor, C. Ratti, A. Schäfer, K.K. Szabo, B.C. Tóth, Phys. Rev. D 98, 014512 (2018). https://doi.org/10.1103/PhysRevD.98.014512. arXiv:1802.07718 [hep-lat]

    Article  ADS  Google Scholar 

  28. M. Giordano, K. Kapas, S.D. Katz, D. Nogradi, A. Pasztor, JHEP 05, 088 (2020). https://doi.org/10.1007/JHEP05(2020)088. arXiv:2004.10800 [hep-lat]

    Article  ADS  Google Scholar 

  29. Z. Fodor, S.D. Katz, JHEP 04, 050 (2004). https://doi.org/10.1088/1126-6708/2004/04/050. arXiv:hep-lat/0402006

    Article  ADS  Google Scholar 

  30. S. Datta, R.V. Gavai, S. Gupta, Phys. Rev. D 95, 054512 (2017). https://doi.org/10.1103/PhysRevD.95.054512. arXiv:1612.06673 [hep-lat]

    Article  ADS  Google Scholar 

  31. C.S. Fischer, J. Luecker, Phys. Lett. B 718, 1036 (2013). https://doi.org/10.1016/j.physletb.2012.11.054. arXiv:1206.5191 [hep-ph]

    Article  ADS  Google Scholar 

  32. G. Eichmann, C.S. Fischer, C.A. Welzbacher, Phys. Rev. D 93, 034013 (2016). https://doi.org/10.1103/PhysRevD.93.034013. arXiv:1509.02082 [hep-ph]

    Article  ADS  Google Scholar 

  33. S. Borsanyi, Z. Fodor, J.N. Guenther, R. Kara, S.D. Katz, P. Parotto, A. Pasztor, C. Ratti, K.K. Szabo, Phys. Rev. Lett. 125, 052001 (2020). https://doi.org/10.1103/PhysRevLett.125.052001. arXiv:2002.02821 [hep-lat]

    Article  ADS  Google Scholar 

  34. W.-J. Fu, J.M. Pawlowski, F. Rennecke, Phys. Rev. D 101, 054032 (2020). https://doi.org/10.1103/PhysRevD.101.054032. arXiv:1909.02991 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  35. F. Gao, J.M. Pawlowski (2020), arXiv:2010.13705 [hep-ph]

  36. X. An, G. Başar, M. Stephanov, H.-U. Yee (2020), arXiv:2009.10742 [hep-th]

  37. D. Mroczek, J. Noronha-Hostler, A.R.N. Acuna, C. Ratti, P. Parotto, M.A. Stephanov, Phys. Rev. C 103, 034901 (2021). https://doi.org/10.1103/PhysRevC.103.034901. arXiv:2008.04022 [nucl-th]

    Article  ADS  Google Scholar 

  38. M. Bluhm et al., Nucl. Phys. A 1003, 122016 (2020). https://doi.org/10.1016/j.nuclphysa.2020.122016. arXiv:2001.08831 [nucl-th]

    Article  Google Scholar 

  39. M. Nahrgang, M. Bluhm, Phys. Rev. D 102, 094017 (2020). https://doi.org/10.1103/PhysRevD.102.094017. arXiv:2007.10371 [nucl-th]

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Nahrgang, M. Bluhm, T. Schaefer, S.A. Bass, Phys. Rev. D 99, 116015 (2019). https://doi.org/10.1103/PhysRevD.99.116015. arXiv:1804.05728 [nucl-th]

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Sorensen, V. Koch (2020), arXiv:2011.06635 [nucl-th]

  42. J. Grefa, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, R. Rougemont (2021), arXiv:2102.12042 [nucl-th]

  43. A. Motornenko, J. Steinheimer, V. Vovchenko, S. Schramm, H. Stoecker, Phys. Rev. C 101, 034904 (2020). https://doi.org/10.1103/PhysRevC.101.034904. arXiv:1905.00866 [hep-ph]

    Article  ADS  Google Scholar 

  44. V. Vovchenko, J. Steinheimer, O. Philipsen, H. Stoecker, Phys. Rev. D 97, 114030 (2018). https://doi.org/10.1103/PhysRevD.97.114030. arXiv:1711.01261 [hep-ph]

    Article  ADS  Google Scholar 

  45. V. Vovchenko, J. Steinheimer, O. Philipsen, A. Pasztor, Z. Fodor, S.D. Katz, H. Stoecker, Nucl. Phys. A 982, 859 (2019). https://doi.org/10.1016/j.nuclphysa.2018.10.068. arXiv:1807.06472 [hep-lat]

    Article  ADS  Google Scholar 

  46. P. Parotto, M. Bluhm, D. Mroczek, M. Nahrgang, J. Noronha-Hostler, K. Rajagopal, C. Ratti, T. Schäfer, M. Stephanov, Phys. Rev. C 101, 034901 (2020). https://doi.org/10.1103/PhysRevC.101.034901. arXiv:1805.05249 [hep-ph]

    Article  ADS  Google Scholar 

  47. T. Dore, J. Noronha-Hostler, E. McLaughlin, Phys. Rev. D 102, 074017 (2020). https://doi.org/10.1103/PhysRevD.102.074017. arXiv:2007.15083 [nucl-th]

    Article  ADS  Google Scholar 

  48. Y. Hama, T. Kodama, W.-L. Qian, J. Phys. G 48, 015104 (2021). https://doi.org/10.1088/1361-6471/abb44a. arXiv:2010.08716 [nucl-th]

    Article  ADS  Google Scholar 

  49. E. McLaughlin, J. Rose, T. Dore, P. Parotto, C. Ratti, J. Noronha-Hostler (2021), arXiv:2103.02090 [nucl-th]

  50. H. Petersen, D. Oliinychenko, M. Mayer, J. Staudenmaier, S. Ryu, Nucl. Phys. A 982, 399 (2019). https://doi.org/10.1016/j.nuclphysa.2018.08.008. arXiv:1808.06832 [nucl-th]

    Article  ADS  Google Scholar 

  51. K. Fukushima, Phys. Rev. D 79, 074015 (2009). https://doi.org/10.1103/PhysRevD.79.074015. arXiv:0901.0783 [hep-ph]

    Article  ADS  Google Scholar 

  52. W.-J. Fu, J.M. Pawlowski, F. Rennecke, SciPost Phys. Core 2, 002 (2020). https://doi.org/10.21468/SciPostPhysCore.2.1.002. arXiv:1808.00410 [hep-ph]

    Article  Google Scholar 

  53. The code on which this work is based can be downloaded at, https://www.bnl.gov/physics/best/resources.php

  54. R.D. Pisarski, F. Wilczek, Phys. Rev. D 29, 338 (1984). https://doi.org/10.1103/PhysRevD.29.338

    Article  ADS  Google Scholar 

  55. K. Rajagopal, F. Wilczek, Nucl. Phys. B 399, 395 (1993). https://doi.org/10.1016/0550-3213(93)90502-G. arXiv:hep-ph/9210253

    Article  ADS  Google Scholar 

  56. R. Guida, J. Zinn-Justin, Nucl. Phys. B 489, 626 (1997). https://doi.org/10.1016/S0550-3213(96)00704-3. arXiv:hep-th/9610223

    Article  ADS  Google Scholar 

  57. C. Nonaka, M. Asakawa, Phys. Rev. C 71, 044904 (2005). https://doi.org/10.1103/PhysRevC.71.044904. arXiv:nucl-th/0410078

    Article  ADS  Google Scholar 

  58. A. Bazavov et al. (collaboration HotQCD), Phys. Lett. B 795, 15 (2019). https://doi.org/10.1016/j.physletb.2019.05.013arXiv:1812.08235 [hep-lat]

  59. P. Alba et al., Phys. Rev. D 96, 034517 (2017). https://doi.org/10.1103/PhysRevD.96.034517. arXiv:1702.01113 [hep-lat]

    Article  ADS  Google Scholar 

  60. A. Monnai, S. Mukherjee, Y. Yin, Phys. Rev. C 95, 034902 (2017). https://doi.org/10.1103/PhysRevC.95.034902. arXiv:1606.00771 [nucl-th]

    Article  ADS  Google Scholar 

  61. E. Brezin, J. Le Guillou, J. Zinn-Justin, in Phase Transitions and Critical Phenomena

  62. B. Berdnikov, K. Rajagopal, Phys. Rev. D 61, 105017 (2000). https://doi.org/10.1103/PhysRevD.61.105017. arXiv:hep-ph/9912274

    Article  ADS  Google Scholar 

  63. J. Weil et al., Phys. Rev. C 94, 054905 (2016). https://doi.org/10.1103/PhysRevC.94.054905. arXiv:1606.06642 [nucl-th]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Volker Koch, Volodymyr Vovchenko, and Travis Dore for fruitful discussion. We would also like to thank Hannah Elfner, Anna Schäfer, and Dmytro Oliinychenko for their assistance in obtaining the hadronic list from SMASH. Furthermore, we would like to acknowledge our fellow BEST collaboration members for helping motivate this work at the previous collaboration meeting. This material is based upon work supported by the National Science Foundation under Grant No. PHY1654219, the US-DOE Nuclear Science Grant No. DE-SC0020633, the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1746047, and by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the Beam Energy Scan Topical (BEST) Collaboration. We also acknowledge the support from the Center of Advanced Computing and Data Systems at the University of Houston. P.P. acknowledges support by the DFG Grant SFB/TR55.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Karthein.

Appendix A: smooth merging of correlation length

Appendix A: smooth merging of correlation length

In order to obtain a result for the correlation length that is consistent with the scaling behavior of the 3D Ising model, we perform a smooth merging of the \(\epsilon \)-expansion and asymptotic forms of the correlation length, as shown in Eqs. (14), (15). We employ a hyperbolic tangent in order to achieve a well-behaved result, useful for hydrodynamic simulations:

$$\begin{aligned} \begin{aligned} \xi _{\text {final}}(T,\mu _B)&= \xi _{\text {asymp}}(T,\mu _B) \frac{1}{2} \Big [1 \pm \tanh {\Big (\frac{T-T_{\text {low/high}}'(\mu _B)}{\Delta T(\mu _B)}}\Big )\Big ] \\&\quad + \xi _{\epsilon }(T,\mu _B) \frac{1}{2} \Big [1 \mp \tanh {\Big (\frac{T-T_{\text {low/high}}'(\mu _B)}{\Delta T(\mu _B)}}\Big )\Big ], \end{aligned} \end{aligned}$$
(A.1)
Fig. 11
figure 11

The curve \(x=5\) in the QCD phase diagram over which the merging of the correlation length formulations is performed

where \(T'(\mu _B)\) acts as the switching temperature and \(\Delta T(\mu _B)\) is the overlap region between the two representations. The merging is performed along a curve in the \((T,\mu _B)\) plane that corresponds to a value of the scaling parameter \(x=5\), as stated in Sect. 4. The shape which this curve follows in the QCD phase diagram is shown in Fig. 11. Since this is a multi-valued function of \(\mu _B\), in order to fit this curve for the switching temperature, we separate it into two functions \(T_{\text {low}}'(\mu _B)\) and \(T_{\text {high}}'(\mu _B)\) for different temperature regimes. These curves were best fit with exponentials, the functional forms for which are

$$\begin{aligned} T_{\text {low}}'(\mu _B)= & {} T_{\text {M,low}} - (T_{\text {M,low}} - T_{0,\text {low}}) e^{-k_{\text {low}} \mu _B} \end{aligned}$$
(A.2)
$$\begin{aligned} T_{\text {high}}'(\mu _B)= & {} T_{0,\text {high}} e^{-k_{\text {high}} \mu _B}, \end{aligned}$$
(A.3)

where \(T_{\text {M,low}}=195\) MeV, \(T_{0,\text {low}}=58\) MeV, \(k_{\text {low}}=0.00318462\), \(T_{0,\text {high}}=282.594\) MeV, \(k_{\text {high}}=0.00207197\). We additionally write the overlap region, \(\Delta T\), as a function of \(\mu _B\) in order to achieve the smoothest possible result for the correlation length. For this function, we also employ an exponential:

$$\begin{aligned} \begin{aligned} \Delta T(\mu _B) = T_{\text {0,merg}} + (T_{\text {M,merg}} - T_{0,\text {merg}}) e^{-k_{\text {merg}} \mu _B} \end{aligned} \end{aligned}$$
(A.4)

where \(T_{\text {M,merg}}=17\) MeV, \(T_{0,\text {merg}}=0.1\) MeV, \(k_{\text {merg}}=0.0075\). This procedure for the smooth merging of the two representations of the correlation length through a hyperbolic tangent yields the critical contribution to the correlation length shown in Fig. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthein, J.M., Mroczek, D., Nava Acuna, A.R. et al. Strangeness-neutral equation of state for QCD with a critical point. Eur. Phys. J. Plus 136, 621 (2021). https://doi.org/10.1140/epjp/s13360-021-01615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01615-5

Navigation