Skip to main content
Log in

Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper investigates damped vibrational behavior of a lightweight sandwich plate subjected to a periodic load within a limited time. The lightweight sandwich structure includes a thick polymeric porous core with either functionally graded or uniformly distributions of voids which is sandwiched by two thin layers of laminate composites. To investigate the effect of void distribution properly, the same void volume fraction has been considered while different types of core have been analyzed. Using the first-order shear deformation theory of plates, the governing equations for the free and forced vibrations have been developed. By involving structural damping, these equations which are able to treat thin to moderately thick plates have been solved by developing a computationally cost-effective finite element approach. An extensive sensitivity analysis has been performed to examine the effects of fiber orientation in composite layers, void’s volume and dispersion in core, and geometrical dimensions on the vibrational behavior of such porous composite sandwich plates (PCSPs). The results show that the use of foam in PCSPs considerably reduces the amplitude of vibrations and improves the fundamental frequency. Furthermore, it was found that the use of [45, −45]2 composite layers offers PCSPs with the highest natural frequency and the lowest amplitude of vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Xie, S. Sahmani, B. Safaei, B. Xu, Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory. Eng. Comput. 37, 1611–1634 (2021). https://doi.org/10.1007/s00366-019-00931-w

    Article  Google Scholar 

  2. S.-X. Chen, S. Sahmani, B. Safaei, Size-dependent nonlinear bending behavior of porous FGM quasi-3D microplates with a central cutout based on nonlocal strain gradient isogeometric finite element modelling. Eng. Comput. 37, 1657–1678 (2021). https://doi.org/10.1007/s00366-021-01303-z

    Article  Google Scholar 

  3. X. Yang, S. Sahmani, B. Safaei, Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects. Eng. Comput. 37, 1549–1564 (2021). https://doi.org/10.1007/s00366-019-00901-2

    Article  Google Scholar 

  4. D.X. Hung, T.M. Tu, L.N. Van, P.H. Anh, Nonlinear buckling and postbuckling of FG porous variable thickness toroidal shell segments surrounded by elastic foundation subjected to compressive loads. Aerosp. Sci. Technol. 107, 106253 (2020). https://doi.org/10.1016/j.ast.2020.106253

    Article  Google Scholar 

  5. R. Moradi-Dastjerdi, K. Behdinan. Layer arrangement impact on the electromechanical performance of a five-layer multifunctional smart sandwich plate. In: K. Behdinan, R. Moradi-Dastjerdi, (eds.) Adv. Multifunct. Light. Aerostructures Des. Dev. Implement. 1st ed., Hoboken: John Wiley & Sons Ltd; (2021), p. 3–24

  6. H. Lin, D. Cao, Y. Xu, Vibration characteristics and flutter analysis of a composite laminated plate with a store. Appl Math Mech English Ed 9, 241–260 (2018). https://doi.org/10.1007/s10483-018-2297-6

    Article  MathSciNet  Google Scholar 

  7. M. Alhijazi, Q. Zeeshan, Z. Qin, B. Safaei, M. Asmael, Finite element analysis of natural fibers composites: a review. Nanotechnol. Rev. 9, 853–875 (2020). https://doi.org/10.1515/ntrev-2020-0069

    Article  Google Scholar 

  8. R. Moradi-Dastjerdi, G. Payganeh, Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads. Steel Compos. Struct. 25, 315–326 (2017). https://doi.org/10.12989/scs.2017.25.3.315

    Article  Google Scholar 

  9. A.M. Fattahi, B. Safaei, Z. Qin, F. Chu, Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites. Steel Compos. Struct. 38, 187 (2021). https://doi.org/10.12989/scs.2021.38.2.177

    Article  Google Scholar 

  10. S. Karimzadeh, B. Safaei, T.C. Jen, Investigate the importance of mechanical properties of SWCNT on doxorubicin anti-cancer drug adsorption for medical application: A molecular dynamic study. J. Mol. Graph. Model 101, 107745 (2020). https://doi.org/10.1016/j.jmgm.2020.107745

    Article  Google Scholar 

  11. E. Magnucka-Blandzi, K. Wisniewska-Mleczko, M.J. Smyczynski, P. Kedzia, Buckling of a sandwich symmetrical circular plate with varying mechanical properties of the core. Appl. Math. Mech. English Ed 39, 981–992 (2018). https://doi.org/10.1007/s10483-018-2347-8

    Article  MathSciNet  MATH  Google Scholar 

  12. J.R. Vinson, Sandwich structures. Appl. Mech. Rev. 54, 201 (2001). https://doi.org/10.1115/1.3097295

    Article  ADS  Google Scholar 

  13. R. Moradi-Dastjerdi, S.A. Meguid, S. Rashahmadi, Electro-dynamic analysis of smart nanoclay-reinforced plates with integrated piezoelectric layers. Appl. Math. Model 75, 267–278 (2019). https://doi.org/10.1016/j.apm.2019.05.033

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Shaban, H. Mazaheri, Bending analysis of five-layer curved functionally graded sandwich panel in magnetic field: closed-form solution. Appl. Math. Mech. English Ed 42, 251–274 (2021). https://doi.org/10.1007/s10483-021-2675-7

    Article  Google Scholar 

  15. Y. Feng, H. Qiu, Y. Gao, H. Zheng, J. Tan, Creative design for sandwich structures: a review. Int. J. Adv. Robot Syst. (2020). https://doi.org/10.1177/1729881420921327

    Article  Google Scholar 

  16. L. Wu, X. Zhang, J. Ban, Q. Jiang, T. Li, J. Lin, Design and optimization of multi-scale porous sandwich composites with excellent sound absorption and cushioning properties. J. Sandw. Struct. Mater. (2021). https://doi.org/10.1177/1099636221993903

    Article  Google Scholar 

  17. T. Liu, S. Hou, X. Nguyen, X. Han, Energy absorption characteristics of sandwich structures with composite sheets and bio coconut core. Compos Part B 114, 328–338 (2017). https://doi.org/10.1016/j.compositesb.2017.01.035

    Article  Google Scholar 

  18. R. Moradi-Dastjerdi, K. Behdinan, Thermo-electro-mechanical behavior of an advanced smart lightweight sandwich plate. Aerosp. Sci. Technol. 106, 106142 (2020). https://doi.org/10.1016/j.ast.2020.106142

    Article  Google Scholar 

  19. M.-C. Trinh, D.-D. Nguyen, S.-E. Kim, T.M. Chien, N.D. Duc, S.K. Eock, Effects of porosity and thermomechanical loading on free vibration and nonlinear dynamic response of functionally graded sandwich shells with double curvature. Aerosp. Sci. Technol. 87, 119–132 (2019). https://doi.org/10.1016/j.ast.2019.02.010

    Article  Google Scholar 

  20. M. Esmaeilzadeh, M. Kadkhodayan, Dynamic analysis of stiffened bi-directional functionally graded plates with porosities under a moving load by dynamic relaxation method with kinetic damping. Aerosp. Sci. Technol. 93, 105333 (2019). https://doi.org/10.1016/j.ast.2019.105333

    Article  Google Scholar 

  21. W. Gao, Z. Qin, F. Chu, Wave propagation in functionally graded porous plates reinforced with graphene platelets. Aerosp. Sci. Technol. 102, 105860 (2020). https://doi.org/10.1016/j.ast.2020.105860

    Article  Google Scholar 

  22. Y. Liu, Z. Qin, F. Chu, Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06358-7

    Article  Google Scholar 

  23. Y. Liu, Z. Qin, F. Chu, Analytical study of the impact response of shear deformable sandwich cylindrical shell with a functionally graded porous core. Mech. Adv. Mater Struct. (2020). https://doi.org/10.1080/15376494.2020.1818904

    Article  Google Scholar 

  24. F. Fan, Y. Xu, S. Sahmani, B. Safaei, Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Comput. Methods Appl. Mech. Eng. 372, 113400 (2020). https://doi.org/10.1016/j.cma.2020.113400

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. J.L. Mantari, A.S. Oktem, S.C. Guedes, A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates. Int. J. Solids Struct. 49, 43–53 (2012). https://doi.org/10.1016/j.ijsolstr.2011.09.008

    Article  Google Scholar 

  26. P. Malekzadeh, A.R. Fiouz, H. Razi, Three-dimensional dynamic analysis of laminated composite plates subjected to moving load. Compos. Struct. 90, 105–114 (2009). https://doi.org/10.1016/j.compstruct.2009.02.008

    Article  Google Scholar 

  27. A.R. Setoodeh, P. Malekzadeh, K. Nikbin, Low velocity impact analysis of laminated composite plates using a 3D elasticity based layerwise FEM. Mater Des. 30, 3795–3801 (2009). https://doi.org/10.1016/j.matdes.2009.01.031

    Article  Google Scholar 

  28. C.H. Thai, A.J.M. Ferreira, E. Carrera, H. Nguyen-Xuan, Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory. Compos. Struct. 104, 196–214 (2013). https://doi.org/10.1016/J.COMPSTRUCT.2013.04.002

    Article  Google Scholar 

  29. T. Yu, S. Yin, T.Q. Bui, S. Xia, S. Tanaka, S. Hirose, NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method. Thin. Walled Struct. 101, 141–156 (2016). https://doi.org/10.1016/j.tws.2015.12.008

    Article  Google Scholar 

  30. F. Tornabene, N. Fantuzzi, M. Bacciocchi, J.N. Reddy, A posteriori stress and strain recovery procedure for the static analysis of laminated shells resting on nonlinear elastic foundation. Compos. Part B Eng. 126, 162–191 (2017). https://doi.org/10.1016/J.COMPOSITESB.2017.06.012

    Article  Google Scholar 

  31. R. Xiaohui, W. Zhen, J. Bin, A refined sinusoidal theory for laminated composite and sandwich plates. Mech. Adv. Mater Struct. (2018). https://doi.org/10.1080/15376494.2018.1538469

    Article  Google Scholar 

  32. M. Sehoul, M. Benguediab, A. Bakora, A. Tounsi, Free vibrations of laminated composite plates using a novel four variable refined plate theory. Steel Compos. Struct. 24, 603–613 (2017). https://doi.org/10.12989/scs.2017.24.5.603

    Article  Google Scholar 

  33. H.K. Bisheh, N. Wu, Wave propagation characteristics in a piezoelectric coupled laminated composite cylindrical shell by considering transverse shear effects and rotary inertia. Compos. Struct. 191, 123–144 (2018). https://doi.org/10.1016/j.compstruct.2018.02.010

    Article  Google Scholar 

  34. Z. Wang, T. Yu, T.Q. Bui, N.A. Trinh, N.T.H. Luong, N.D. Duc et al., Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM. Adv. Eng. Softw. 102, 105–122 (2016). https://doi.org/10.1016/j.advengsoft.2016.09.007

    Article  Google Scholar 

  35. N.V. Nguyen, H.X. Nguyen, S. Lee, H. Nguyen-xuan, Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates. Adv. Eng. Softw. 126, 110–126 (2018). https://doi.org/10.1016/j.advengsoft.2018.11.005

    Article  Google Scholar 

  36. J. Yang, D. Chen, S. Kitipornchai, Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos Struct 193, 281–294 (2018). https://doi.org/10.1016/J.COMPSTRUCT.2018.03.090

    Article  Google Scholar 

  37. Y.H. Dong, Y.H. Li, D. Chen, J. Yang, Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Compos. Part B Eng. 145, 1–13 (2018). https://doi.org/10.1016/j.compositesb.2018.03.009

    Article  Google Scholar 

  38. M.R. Barati, A.M. Zenkour, Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions. J. Vib. Control. 24, 1910–1926 (2018). https://doi.org/10.1177/1077546316672788

    Article  MathSciNet  Google Scholar 

  39. M. Askari, A.R. Saidi, A.S. Rezaei, An investigation over the effect of piezoelectricity and porosity distribution on natural frequencies of porous smart plates. J. Sandw. Struct. Mater. (2018). https://doi.org/10.1177/1099636218791092

    Article  Google Scholar 

  40. M. Mohammadi, M. Bamdad, K. Alambeigi, R. Dimitri, F. Tornabene, Electro-elastic response of cylindrical sandwich pressure vessels with porous core and piezoelectric face-sheets. Compos. Struct. 225, 111119 (2019). https://doi.org/10.1016/J.COMPSTRUCT.2019.111119

    Article  Google Scholar 

  41. R. Moradi-Dastjerdi, K. Behdinan, B. Safaei, Z. Qin, Static performance of agglomerated CNT-reinforced porous plates bonded with piezoceramic faces. Int. J. Mech. Sci. 188, 105966 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105966

    Article  Google Scholar 

  42. R. Moradi-Dastjerdi, K. Behdinan, B. Safaei, Z. Qin, Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers. Eng. Struct. 222, 111141 (2020). https://doi.org/10.1016/j.engstruct.2020.111141

    Article  Google Scholar 

  43. R. Moradi-Dastjerdi, K. Behdinan, Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers. Appl. Math. Model (2021). https://doi.org/10.1016/j.apm.2021.03.013

    Article  MathSciNet  Google Scholar 

  44. N.V. Nguyen, J. Lee, H. Nguyen-Xuan, Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers. Compos. Part B Eng. 172, 769–784 (2019). https://doi.org/10.1016/J.COMPOSITESB.2019.05.060

    Article  Google Scholar 

  45. J. Zhao, F. Xie, A. Wang, C. Shuai, J. Tang, Q. Wang, Vibration behavior of the functionally graded porous (FGP ) doubly-curved panels and shells of revolution by using a semi-analytical method. Compos. Part B 157, 219–238 (2019). https://doi.org/10.1016/j.compositesb.2018.08.087

    Article  Google Scholar 

  46. O. Zargar, M. Mollaghaee-Roozbahani, M. Bashirpour, M. Baghani, The application of homotopy analysis method to determine the thermal response of convective-radiative porous fins with temperature-dependent properties. Int. J. Appl. Mech. (2019). https://doi.org/10.1142/S1758825119500893

    Article  Google Scholar 

  47. M. Babaei, M. Hadi, K. Asemi, Natural frequency and dynamic analyses of functionally graded saturated porous annular sector plate and cylindrical panel based on 3D elasticity. Aerosp. Sci. Technol. 96, 105524 (2020). https://doi.org/10.1016/j.ast.2019.105524

    Article  Google Scholar 

  48. B. Sobhani Aragh, M.H. Yas, Effect of continuously grading fiber orientation face sheets on vibration of sandwich panels with FGM core. Int. J. Mech. Sci. 53, 628–638 (2011). https://doi.org/10.1016/J.IJMECSCI.2011.05.009

    Article  Google Scholar 

  49. R. Moradi-Dastjerdi, K. Behdinan, Temperature effect on free vibration response of a smart multifunctional sandwich plate. J. Sandw. Struct. Mater. (2020). https://doi.org/10.1177/1099636220908707

    Article  Google Scholar 

  50. R. Moradi-Dastjerdi, A. Radhi, K. Behdinan, Damped dynamic behavior of an advanced piezoelectric sandwich plate. Compos. Struct. 243, 112243 (2020). https://doi.org/10.1016/j.compstruct.2020.112243

    Article  Google Scholar 

  51. A.R. Setoodeh, M. Shojaee, P. Malekzadeh, Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core. Compos. Part B Eng. 165, 798–822 (2019). https://doi.org/10.1016/J.COMPOSITESB.2019.01.022

    Article  Google Scholar 

  52. B. Safaei, R. Moradi-Dastjerdi, Z. Qin, K. Behdinan, F. Chu, Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes. J. Sandw. Struct. Mater. (2019). https://doi.org/10.1177/1099636219848282

    Article  Google Scholar 

  53. A. Amiri, M. Mohammadimehr, M. Anvari, Stress and buckling analysis of a thick-walled micro sandwich panel with a flexible foam core and carbon nanotube reinforced composite (CNTRC) face sheets. Appl. Math. Mech. English Ed. 41, 1027–1038 (2020). https://doi.org/10.1007/s10483-020-2627-7

    Article  Google Scholar 

  54. Q. Li, D. Wu, X. Chen, L. Liu, Y. Yu, W. Gao, Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation. Int. J. Mech. Sci. 148, 596–610 (2018). https://doi.org/10.1016/J.IJMECSCI.2018.09.020

    Article  Google Scholar 

  55. R. Moradi-Dastjerdi, K. Behdinan, Stress waves in thick porous graphene-reinforced cylinders under thermal gradient environments. Aerosp. Sci. Technol. 110, 106476 (2021). https://doi.org/10.1016/j.ast.2020.106476

    Article  Google Scholar 

  56. B. Safaei, The effect of embedding a porous core on the free vibration behavior of laminated composite plates. Steel Compos. Struct. 35, 659–670 (2020). https://doi.org/10.12989/SCS.2020.35.5.659

    Article  Google Scholar 

  57. Reddy JN. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC press; 2004.

  58. M. Mohammadsalehi, O. Zargar, M. Baghani, Study of non-uniform viscoelastic nanoplates vibration based on nonlocal first-order shear deformation theory. Meccanica 52, 1063–1077 (2017). https://doi.org/10.1007/s11012-016-0432-0

    Article  MathSciNet  MATH  Google Scholar 

  59. R. Talebitooti, K. Daneshjoo, S.A.M. Jafari, Optimal control of laminated plate integrated with piezoelectric sensor and actuator considering TSDT and meshfree method. Eur. J. Mech. A/Solids 55, 199–211 (2016). https://doi.org/10.1016/j.euromechsol.2015.09.004

    Article  MathSciNet  MATH  ADS  Google Scholar 

  60. A.H. Baferani, A.R. Saidi, H. Ehteshami, Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation. Compos. Struct. 93, 1842–1853 (2011)

    Article  Google Scholar 

  61. H. Thai, D. Choi, A refined plate theory for functionally graded plates resting on elastic foundation. Compos. Sci. Technol. 71, 1850–1858 (2011). https://doi.org/10.1016/j.compscitech.2011.08.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Safaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaei, B. Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces. Eur. Phys. J. Plus 136, 646 (2021). https://doi.org/10.1140/epjp/s13360-021-01632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01632-4

Navigation