Skip to main content
Log in

Analytical assessment of the axisymmetric snap-through behaviour of FG_CNTRC spherical shells under uniform external pressure incorporating the CNTs agglomeration effects

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present paper, the geometrical nonlinear behaviour of the sandwich shallow spherical shells made of the functionally graded carbon nanotube-reinforced composites is assessed. In order to solve the proposed problem, the equilibrium, compatibility and constitutive equations are extended based on the first-order shear deformation theory. The obtained system of nonlinear differential equations is solved by employing an analytical approach based on the modified interactions method, which results a closed-form relationship between external load and deformation of the shell. Firstly, the obtained closed-form formula is validated by comparing the corresponding results with those obtained by other methods such as finite element method. After the validation procedure, the mentioned closed-form solution is employed to perform a comprehensive parametric study incorporating the mechanical and geometrical properties, such as the effects of CNTs agglomerating, depth and boundary conditions of the shell. The obtained results in the parametric studies show that all of the parameters can affect the buckling load, stability region and intensity of the instability (difference of upper and lower limit loads).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.W. Hutchinson, Buckling of spherical shells revisited. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2195), 1–25 (2016). https://doi.org/10.1098/rspa.2016.0577

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Taffetani, X. Jiang, D.P. Holmes, D. Vella, Static bistability of spherical caps. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2213), 1–21 (2018). https://doi.org/10.1098/rspa.2017.0910

    Article  MathSciNet  MATH  Google Scholar 

  3. K.A. Seffen, “Morphing” bistable orthotropic elliptical shallow shells. Proc. R. Soc. A Math. Phys. Eng. Sci. 463(2077), 67–83 (2007). https://doi.org/10.1098/rspa.2006.1750

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M. Curatolo, G. Napoli, P. Nardinocchi, S. Turzi, Dehydration induced mechanical instabilities in active elastic spherical shells, 1–25 (2020). arXiv Prepr https://arxiv.org/abs/2011.06342

  5. S. Vidoli, Discrete approximations of the Föppl-Von Kármán shell model: From coarse to more refined models. Int. J. Solids Struct. 50(9), 1241–1252 (2013). https://doi.org/10.1016/j.ijsolstr.2012.12.017

    Article  Google Scholar 

  6. H. Salehipour, A. Shahsavar, Ö. Civalekc, Free vibration and static deflection analysis of functionally graded and porous micro/nanoshells with clamped and simply supported edges. Compos. Struct. 221, 110842 (2019). https://doi.org/10.1016/j.compstruct.2019.04.014

    Article  Google Scholar 

  7. M. Karimiasl, F. Ebrahimi, V. Mahesh. Hygrothermal postbuckling analysis of smart multiscale piezoelectric composite shells. Eur. Phys. J. Plus. 135(2), 1–21 (2020). https://doi.org/10.1140/epjp/s13360-020-00137-w

    Article  Google Scholar 

  8. R. Salmani, R. Gholami, R. Ansari, M. Fakhraie, Analytical investigation on the nonlinear postbuckling of functionally graded porous cylindrical shells reinforced with graphene nanoplatelets. Eur. Phys. J. Plus. 136(1), 1–19 (2021). https://doi.org/10.1140/epjp/s13360-020-01009-z

    Article  Google Scholar 

  9. D.H. Bich, H.V. Tung, Non-linear axisymmetric response of functionally graded shallow spherical shells under uniform external pressure including temperature effects. Int. J. Non Linear Mech. 46(9), 1195–1204 (2011). https://doi.org/10.1016/j.ijnonlinmec.2011.05.015

    Article  Google Scholar 

  10. Q.S. Li, J. Liu, J. Tang, Buckling of shallow spherical shells including the effects of transverse shear deformation. Int. J. Mech. Sci. 45(9), 1519–1529 (2003). https://doi.org/10.1016/j.ijmecsci.2003.09.020

    Article  MATH  Google Scholar 

  11. M.A. Shahmohammadi, P. Abdollahi, H. Salehipour, Geometrically nonlinear analysis of doubly curved imperfect shallow shells made of functionally graded carbon nanotube reinforced composite (FG_CNTRC). Mech. Based Des. Struct. Mach. 1–23 (2020). https://doi.org/10.1080/15397734.2020.1822182

  12. D.H. Bich, D.V. Dung, L.K. Hoa, Nonlinear static and dynamic buckling analysis of functionally graded shallow spherical shells including temperature effects. Compos. Struct. 94(9), 2952–2960 (2012). https://doi.org/10.1016/j.compstruct.2012.04.012

    Article  Google Scholar 

  13. M. Mohandes, A.R. Ghasemi, A new approach to reinforce the fiber of nanocomposite reinforced by CNTs to analyze free vibration of hybrid laminated cylindrical shell using beam modal function method. Eur. J. Mech. A/Solids. 73, 224–234 (2019). https://doi.org/10.1016/j.euromechsol.2018.09.006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A.R. Ghasemi, M. Mohandes, R. Dimitri, F. Tornabene, Agglomeration effects on the vibrations of CNTs/fiber/polymer/metal hybrid laminates cylindrical shell. Compos. Part B Eng. 167, 700–716 (2019). https://doi.org/10.1016/j.compositesb.2019.03.028

    Article  Google Scholar 

  15. B. Safaei, R. Moradi-Dastjerdi, F. Chu, Effect of thermal gradient load on thermo-elastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations. Compos. Struct. 192, 28–37 (2018). https://doi.org/10.1016/j.compstruct.2018.02.022

    Article  Google Scholar 

  16. L.W. Zhang, Z.X. Lei, K.M. Liew, Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method. Compos. Struct. 120, 189–199 (2015). https://doi.org/10.1016/j.compstruct.2014.10.009

    Article  Google Scholar 

  17. S. Kwak, K. Kim, Y. Ri, G. Jong, H. Ri, Natural frequency calculation of open laminated conical and cylindrical shells by a meshless method. Eur. Phys. J. Plus. 135(6), 1–33 (2020). https://doi.org/10.1140/epjp/s13360-020-00438-0

    Article  Google Scholar 

  18. H. Mellouli, H. Jrad, M. Wali, F. Dammak, Free vibration analysis of FG-CNTRC shell structures using the meshfree radial point interpolation method. Comput. Math. Appl. 79(11), 3160–3178 (2020). https://doi.org/10.1016/j.camwa.2020.01.015

    Article  MathSciNet  MATH  Google Scholar 

  19. S.M. Mirfatah, B. Boroomand, E. Soleimanifar, On the solution of 3D problems in physics: From the geometry definition in CAD to the solution by a meshless method. J. Comput. Phys. 393, 351–374 (2019). https://doi.org/10.1016/j.jcp.2019.05.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. M. Zareh, X. Qian, Kirchhoff-Love shell formulation based on triangular isogeometric analysis. Comput. Methods Appl. Mech. Eng. 347, 853–873 (2019). https://doi.org/10.1016/j.cma.2018.12.034

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. L. Leonetti, F. Liguori, D. Magisano, G. Garcea, An efficient isogeometric solid-shell formulation for geometrically nonlinear analysis of elastic shells. Comput. Methods Appl. Mech. Eng. 331, 159–183 (2018). https://doi.org/10.1016/j.cma.2017.11.025

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. P. Kang, S.K. Youn, Isogeometric analysis of topologically complex shell structures. Finite Elem. Anal. Des. 99, 68–81 (2015). https://doi.org/10.1016/j.finel.2015.02.002

    Article  MathSciNet  Google Scholar 

  23. M.A. Shahmohammadi, M. Azhari, M.M. Saadatpour, Free vibration analysis of sandwich FGM shells using isogeometric B - spline finite strip method. Steel Compos. Struct. 34(3), 361–376 (2020). https://doi.org/10.12989/scs.2020.34.3.361

    MATH  Google Scholar 

  24. M.A. Shahmohammadi, M. Azhari, M.M. Saadatpour, S. Sarrami-Foroushani, Stability of laminated composite and sandwich FGM shells using a novel isogeometric finite strip method. Eng. Comput. 37(4), 1369–1395 (2019). https://doi.org/10.1108/EC-06-2019-0246

    Article  MATH  Google Scholar 

  25. M.A. Shahmohammadi, M. Azhari, M.M. Saadatpour, S. Sarrami-Foroushani, Geometrically nonlinear analysis of sandwich FGM and laminated composite degenerated shells using the isogeometric finite strip method. Comput. Methods Appl. Mech. Eng. 371, 113311 (2020). https://doi.org/10.1016/j.cma.2020.113311

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. M.A. Shahmohammadi, M. Azhari, M.M. Saadatpour, H. Salehipour, Ö. Civalek, Dynamic instability analysis of general shells reinforced with polymeric matrix and carbon fibers using a coupled IG-SFSM formulation. Compos. Struct. 263, 113720 (2021). https://doi.org/10.1016/j.compstruct.2021.113720

    Article  Google Scholar 

  27. H. Mousavi, M. Azhari, M.M. Saadatpour, S. Sarrami-Foroushani, A coupled improved element free Galerkin-finite strip (IEFG-FS) method for free vibration analysis of plate. Int. J. Appl. Mech. 11(10), 1950103 (2019). https://doi.org/10.1142/S1758825119501035

    Article  Google Scholar 

  28. H. Mousavi, M. Azhari, M.M. Saadatpour, A novel formulation for static and buckling analysis of plates using coupled element free Galerkin-finite strip (EFG-FS). Appl. Math. Model. 70, 264–284 (2019). https://doi.org/10.1016/j.apm.2019.01.019

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Mousavi, M. Azhari, M.M. Saadatpour, S. Sarrami-Foroushani, Application of improved element-free Galerkin combining with finite strip method for buckling analysis of channel-section beams with openings. Eng. Comput. 1–17 (2020). https://doi.org/10.1007/s00366-020-01087-8

  30. Z. Juhász, A. Szekrényes, An analytical solution for buckling and vibration of delaminated composite spherical shells. Thin-Walled Struct. 148, 106563 (2020). https://doi.org/10.1016/j.tws.2019.106563

    Article  Google Scholar 

  31. A.Y. Evkin, Composite spherical shells at large deflections. Asymptotic analysis and applications. Compos. Struct. 233, 111577 (2020). https://doi.org/10.1016/j.compstruct.2019.111577

    Article  Google Scholar 

  32. M. Kholdi, A. Loghman, H. Ashrafi, M. Arefi, Analysis of thick-walled spherical shells subjected to external pressure: Elastoplastic and residual stress analysis. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 234(1), 186–197 (2020). https://doi.org/10.1177/1464420719882958

    Article  Google Scholar 

  33. D. Yan, M. Pezzulla, P.M. Reis, Buckling of pressurized spherical shells containing a through-thickness defect. J. Mech. Phys. Solids. 138, 103923 (2020). https://doi.org/10.1016/j.jmps.2020.103923

    Article  MathSciNet  Google Scholar 

  34. Q. He, H.L. Dai, Q.F. Gui, J.J. Li, Analysis of vibration characteristics of joined cylindrical-spherical shells. Eng. Struct. 218, 110767 (2020). https://doi.org/10.1016/j.engstruct.2020.110767

    Article  Google Scholar 

  35. D. Shahgholian-Ghahfarokhi, M. Safarpour, A. Rahimi, Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mech. Based Des. Struct. Mach. 1–22 (2019). https://doi.org/10.1080/15397734.2019.1666723

  36. T.J. Liu, F. Yang, H. Yu, S.M. Aizikovich, Axisymmetric adhesive contact problem for functionally graded materials coating based on the linear multi-layered model. Mech. Based. Des. Struct. Mach. 1–18 (2019). https://doi.org/10.1080/15397734.2019.1666721

  37. E. García-Macías, C.F. Guzmán, E.I. Saavedra-Flores, R. Castro-Triguero, Multiscale modeling of the elastic moduli of CNT-reinforced polymers and fitting of efficiency parameters for the use of the extended rule-of-mixtures. Compos. Part B Eng. 159, 114–131 (2019). https://doi.org/10.1016/j.compositesb.2018.09.057

    Article  Google Scholar 

  38. D.L. Shi, X.Q. Feng, Y.Y. Huang, K.C. Hwang, H. Gao, The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. Trans. ASME. 126(3), 250–257 (2004). https://doi.org/10.1115/1.1751182

    Article  Google Scholar 

  39. S. Feli, L. Karami, S.S. Jafari, Analytical modeling of low velocity impact on carbon nanotube-reinforced composite (CNTRC) plates. Mech. Adv. Mater. Struct. 26(5), 394–406 (2019). https://doi.org/10.1080/15376494.2017.1400613

    Article  Google Scholar 

  40. S. Kamarian, M. Salim, R. Dimitri, F. Tornabene, Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes. Int. J. Mech. Sci. 108–109, 157–165 (2016). https://doi.org/10.1016/j.ijmecsci.2016.02.006

    Article  Google Scholar 

  41. A. Pourasghar, M.H. Yas, S. Kamarian, Local aggregation effect of CNT on the vibrational behavior of four-parameter continuous grading nanotube-reinforced cylindrical panels. Polym. Compos. 34(5), 707–721 (2013). https://doi.org/10.1002/pc.22474

    Article  Google Scholar 

  42. F. Ebrahimi, A. Seyfi, Wave propagation response of multi-scale hybrid nanocomposite shell by considering aggregation effect of CNTs. Mech. Based Des. Struct. Mach. 1–22 (2019). https://doi.org/10.1080/15397734.2019.1666722

  43. Z. Chen, A. Wang, B. Qin, Q. Wang, R. Zhong, Investigation on free vibration and transient response of functionally graded graphene platelets reinforced cylindrical shell resting on elastic foundation. Eur. Phys. J. Plus. 135(7), 1–34 (2020). https://doi.org/10.1140/epjp/s13360-020-00577-4

    Article  ADS  Google Scholar 

  44. H. Daghigh, V. Daghigh, Free vibration of size and temperature-dependent carbon nanotube (CNT)-reinforced composite nanoplates with CNT agglomeration. Polym. Compos. 40(2), 1479–1494 (2019). https://doi.org/10.1002/pc.25057

    Article  Google Scholar 

  45. R. Moradi-Dastjerdi, H. Malek-Mohammadi, H. Momeni-Khabisi, Free vibration analysis of nanocomposite sandwich plates reinforced with CNT aggregates. Z. Angew Math und Mech. 97(11), 1418–1435 (2017). https://doi.org/10.1002/zamm.201600209

    Article  MathSciNet  Google Scholar 

  46. M.A. Shahmohamadi, M.Z. Kabir, Effects of shear deformation on mechanical and thermo-mechanical nonlinear stability of FGM shallow spherical shells subjected to uniform external pressure. Sci. Iran. 24(2), 584–596 (2017). https://doi.org/10.24200/sci.2017.2420

    Google Scholar 

  47. A. Houshmand-sarvestani, M.A. Shahmohammadi, H. Salehipour, Investigation of geometric nonlinear stability of sandwich functionally graded (SFGM) spherical shells under uniform external pressure using an analytical approach. Mech. Based Des. Struct. Mach. 1–13 (2020). https://doi.org/10.1080/15397734.2020.1763181

  48. ABAQUS user’s manual. Version 6.17. In ABAQUS Providence, RI

  49. A. Houshmand-Sarvestani, A. Totonchi, M.A. Shahmohammadi, H. Salehipour, Numerical assessment of the effects of ADAS yielding metallic dampers on the structural behavior of steel shear walls (SSWs). Mech. Based Des. Struct. Mach. 1–19 (2021). https://doi.org/10.1080/15397734.2021.1875328

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamzeh Salehipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahmohammadi, M.A., Mirfatah, S.M., Houshmand-Sarvestani, A. et al. Analytical assessment of the axisymmetric snap-through behaviour of FG_CNTRC spherical shells under uniform external pressure incorporating the CNTs agglomeration effects. Eur. Phys. J. Plus 136, 748 (2021). https://doi.org/10.1140/epjp/s13360-021-01724-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01724-1

Navigation