Skip to main content
Log in

Size-dependent thermoelastic vibrations of Timoshenko nanobeams by taking into account dual-phase-lagging effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, size-dependent modeling and analysis of thermoelastic coupling effect on the oscillations of Timoshenko nanobeams are carried out. Small-scale effect on the nanostructure and heat conduction is taken into account with the aid of nonlocal strain gradient theory (NSGT) together with dual-phase-lag (DPL) heat conduction model. In order to illustrate the influence of nonclassical scale parameters on the coefficients of governing equations, the normalized forms of size-dependent equations of motion and heat conduction are established by definition of some dimensionless parameters. These coupled differential equations are then solved in the Laplace domain to attain the analytical thermoelastic responses of a simply supported Timoshenko nanobeam subjected to a dynamic load. Through several numerical examples, a detailed parametric study is performed to illuminate the decisive role of nonlocal, strain gradient and phase lag parameters in thermoelastic behavior of Timoshenko nanobeams. Furthermore, comparing the results corresponding to various relative magnitudes of nonlocal and strain gradient length scale parameters confirms the potential of NSGT for covering both hardening and softening characteristic of nanoscale structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  2. Q. Ma, D.R. Clarke, Size dependent hardness of silver single crystals. J. Mater. Res. 10(4), 853–863 (1995)

    Article  ADS  Google Scholar 

  3. A.C. Chong, D.C. Lam, Strain gradient plasticity effect in indentation hardness of polymers. J. Mater. Res. 14(10), 4103–4110 (1999)

    Article  ADS  Google Scholar 

  4. R.A. Toupin, Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. A.C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)

    Article  MATH  Google Scholar 

  6. F.A.C.M. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  7. R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  8. C.W. Lim, G. Zhang, J.N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. M.H. Ghayesh, H. Farokhi, A. Farajpour, Viscoelastically coupled in-plane and transverse dynamics of imperfect microplates. Thin-Walled Structures 150, 106117 (2020)

    Article  Google Scholar 

  10. M. Şimşek, T. Kocatürk, ŞD. Akbaş, Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory. Compos. Struct. 95, 740–747 (2013)

    Article  Google Scholar 

  11. F. Zheng, Y. Lu, A. Ebrahimi-Mamaghani, Dynamical stability of embedded spinning axially graded micro and nanotubes conveying fluid. Waves Random Complex Media 1–39 (2020)

  12. F. Ebrahimi, M.R. Barati, Ö. Civalek, Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 36, 1–12 (2019)

    Google Scholar 

  13. M. Alimoradzadeh, ŞD. Akbaş, Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory. Eur. Phys. J. Plus 136(5), 1–20 (2021)

    Article  Google Scholar 

  14. Y. Yuan, K. Zhao, Y. Han, S. Sahmani, B. Safaei, Nonlinear oscillations of composite conical microshells with in-plane heterogeneity based upon a couple stress-based shell model. Thin-Walled Struct. 154, 106857 (2020)

    Article  Google Scholar 

  15. A.R. Askari, M. Tahani, Size-dependent dynamic pull-in analysis of geometric non-linear micro-plates based on the modified couple stress theory. Phys. E 86, 262–274 (2017)

    Article  Google Scholar 

  16. H.B. Khaniki, S. Hosseini-Hashemi, The size-dependent analysis of multilayered microbridge systems under a moving load/mass based on the modified couple stress theory. Eur. Phys. J. Plus 132(5), 1–18 (2017)

    Google Scholar 

  17. I. Soleimani, Y.T. Beni, Vibration analysis of nanotubes based on two-node size dependent axisymmetric shell element. Arch. Civ. Mech. Eng. 18, 1345–1358 (2018)

    Article  Google Scholar 

  18. V. Borjalilou, M. Asghari, Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model. Acta Mech. 229(9), 3869–3884 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Borjalilou, M. Asghari, E. Bagheri, Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model. J. Therm. Stress. 42(7), 801–814 (2019)

    Article  Google Scholar 

  20. R. Kolahchi, M.S. Zarei, M.H. Hajmohammad, A.N. Oskouei, Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods. Thin-Walled Struct. 113, 162–169 (2017)

    Article  Google Scholar 

  21. S. Mondal, N. Sarkar, N. Sarkar, Waves in dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity. J. Therm. Stress. 42(8), 1035–1050 (2019)

    Article  Google Scholar 

  22. V. Borjalilou, M. Asghari, E. Taati, Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect. J. Vib. Control 26(11–12), 1042–1053 (2020)

    Article  MathSciNet  Google Scholar 

  23. F. Li, S. Esmaeili, On thermoelastic damping in axisymmetric vibrations of circular nanoplates: incorporation of size effect into structural and thermal areas. Eur. Phys. J. Plus 136(2), 1–17 (2021)

    Article  Google Scholar 

  24. M. Arefi, A.M. Zenkour, Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates. Eur. Phys. J. Plus 132(10), 1–13 (2017)

    Article  Google Scholar 

  25. M.F. Oskouie, R. Ansari, H. Rouhi, Nonlinear bending and postbuckling analysis of FG nanoscale beams using the two-phase fractional nonlocal continuum mechanics. Eur. Phys. J. Plus 134(10), 1–15 (2019)

    Google Scholar 

  26. S. Dastjerdi, M. Malikan, R. Dimitri, F. Tornabene, Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment. Compos. Struct. 255, 112925 (2021)

    Article  Google Scholar 

  27. V. Borjalilou, E. Taati, M.T. Ahmadian, Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: exact solutions. SN Appl. Sci. 1(11), 1–15 (2019)

    Article  Google Scholar 

  28. M. Fazlali, S.A. Faghidian, M. Asghari, H.M. Shodja, Nonlinear flexure of Timoshenko–Ehrenfest nano-beams via nonlocal integral elasticity. Eur. Phys. J. Plus 135(8), 1–20 (2020)

    Article  Google Scholar 

  29. M. Soltani, F. Atoufi, F. Mohri, R. Dimitri, F. Tornabene, Nonlocal elasticity theory for lateral stability analysis of tapered thin-walled nanobeams with axially varying materials. Thin-Walled Struct. 159, 107268 (2021)

    Article  Google Scholar 

  30. Z. Yang, D. Cheng, G. Cong, D. Jin, V. Borjalilou, Dual-phase-lag thermoelastic damping in nonlocal rectangular nanoplates. Waves Random Complex Media 1–20 (2021)

  31. B. Wang, C. Lu, C. Fan, M. Zhao, A stable and efficient meshfree Galerkin method with consistent integration schemes for strain gradient thin beams and plates. Thin-Walled Struct. 153, 106791 (2020)

    Article  Google Scholar 

  32. V. Borjalilou, M. Asghari, Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory. Int. J. Appl. Mech. 11(01), 1950007 (2019)

    Article  Google Scholar 

  33. M.Ö. Yaylı, B. Uzun, B. Deliktaş, Buckling analysis of restrained nanobeams using strain gradient elasticity. Waves Random Complex Media 1–20 (2021)

  34. A. Karamanli, M. Aydogdu, T.P. Vo, A comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element model. Aerospace Sci. Technol. 111, 106550 (2021)

    Article  Google Scholar 

  35. V. Borjalilou, M. Asghari, Thermoelastic damping in strain gradient microplates according to a generalized theory of thermoelasticity. J. Therm. Stress. 43(4), 401–420 (2020)

    Article  Google Scholar 

  36. M.M. Adeli, A. Hadi, M. Hosseini, H.H. Gorgani, Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory. Eur. Phys. J. Plus 132(9), 1–10 (2017)

    Article  Google Scholar 

  37. M. Hashemian, S. Foroutan, D. Toghraie, Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects. Mech. Mater. 139, 103209 (2019)

    Article  Google Scholar 

  38. Q. Wu, H. Chen, W. Gao, Nonlocal strain gradient forced vibrations of FG-GPLRC nanocomposite microbeams. Eng. Comput. 36, 1–12 (2019)

    ADS  Google Scholar 

  39. M.H. Ghayesh, H. Farokhi, A. Farajpour, A coupled longitudinal-transverse nonlinear NSGT model for CNTs incorporating internal energy loss. Eur. Phys. J. Plus 134(4), 179 (2019)

    Article  Google Scholar 

  40. P. Sourani, M. Hashemian, M. Pirmoradian, D. Toghraie, A comparison of the Bolotin and incremental harmonic balance methods in the dynamic stability analysis of an Euler–Bernoulli nanobeam based on the nonlocal strain gradient theory and surface effects. Mech. Mater. 145, 103403 (2020)

    Article  Google Scholar 

  41. Y. Gao, W.S. Xiao, H. Zhu, Nonlinear vibration of different types of functionally graded nanotubes using nonlocal strain gradient theory. Eur. Phys. J. Plus 134(7), 1–21 (2019)

    Article  Google Scholar 

  42. B. Karami, M. Janghorban, A. Tounsi, Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Struct. 129, 251–264 (2018)

    Article  Google Scholar 

  43. B. Karami, D. Shahsavari, M. Janghorban, L. Li, Wave dispersion of nanobeams incorporating stretching effect. Waves in Random Complex Media 31, 1–21 (2019)

    Google Scholar 

  44. Y. Bai, M. Suhatril, Y. Cao, A. Forooghi, H. Assilzadeh, Hygro–thermo-magnetically induced vibration of nanobeams with simultaneous axial and spinning motions based on nonlocal strain gradient theory. Eng. Comput. 1–18 (2021)

  45. M. Mahinzare, K. Mohammadi, M. Ghadiri, A nonlocal strain gradient theory for vibration and flutter instability analysis in rotary SWCNT with conveying viscous fluid. Waves Random Complex Media 31, 1–26 (2019)

    MathSciNet  Google Scholar 

  46. J. Ignaczak, M. Ostoja-Starzewski, Thermoelasticity with Finite Wave Speeds (Oxford University Press, 2010)

    MATH  Google Scholar 

  47. M. Xu, X. Li, The modeling of nanoscale heat conduction by Boltzmann transport equation. Int. J. Heat Mass Transf. 55(7–8), 1905–1910 (2012)

    Article  Google Scholar 

  48. H.W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  ADS  MATH  Google Scholar 

  49. D.Y. Tzou, Macro-to Microscale Heat Transfer: The Lagging Behavior (Wiley, 2014)

    Book  Google Scholar 

  50. R.A. Guyer, J.A. Krumhansl, Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148(2), 766 (1966)

    Article  ADS  Google Scholar 

  51. C. Zener, Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 52(3), 230 (1937)

    Article  ADS  MATH  Google Scholar 

  52. R. Lifshitz, M.L. Roukes, Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 61(8), 5600 (2000)

    Article  ADS  Google Scholar 

  53. Y. Sun, D. Fang, A.K. Soh, Thermoelastic damping in micro-beam resonators. Int. J. Solids Struct. 43(10), 3213–3229 (2006)

    Article  MATH  Google Scholar 

  54. Y. Sun, D. Fang, M. Saka, A.K. Soh, Laser-induced vibrations of micro-beams under different boundary conditions. Int. J. Solids Struct. 45(7–8), 1993–2013 (2008)

    Article  MATH  Google Scholar 

  55. S. Prabhakar, M.P. Païdoussis, S. Vengallatore, Analysis of frequency shifts due to thermoelastic coupling in flexural-mode micromechanical and nanomechanical resonators. J. Sound Vib. 323(1–2), 385–396 (2009)

    Article  ADS  Google Scholar 

  56. E.K. Kakhki, S.M. Hosseini, M. Tahani, An analytical solution for thermoelastic damping in a micro-beam based on generalized theory of thermoelasticity and modified couple stress theory. Appl. Math. Model. 40(4), 3164–3174 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. A.M. Zenkour, Thermoelastic response of a microbeam embedded in visco-Pasternak’s medium based on GN-III model. J. Therm. Stress. 40(2), 198–210 (2017)

    Article  Google Scholar 

  58. E. Taati, M.M. Najafabadi, H.B. Tabrizi, Size-dependent generalized thermoelasticity model for Timoshenko microbeams. Acta Mech. 225(7), 1823–1842 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. A.E. Abouelregal, A.M. Zenkour, Nonlocal thermoelastic model for temperature-dependent thermal conductivity nanobeams due to dynamic varying loads. Microsyst. Technol. 24(2), 1189–1199 (2018)

    Article  Google Scholar 

  60. R.H. Hendou, A.K. Mohammadi, Transient analysis of nonlinear Euler–Bernoulli micro-beam with thermoelastic damping, via nonlinear normal modes. J. Sound Vib. 333(23), 6224–6236 (2014)

    Article  ADS  Google Scholar 

  61. S.M. Hosseini, Analytical solution for nonlocal coupled thermoelasticity analysis in a heat-affected MEMS/NEMS beam resonator based on Green–Naghdi theory. Appl. Math. Model. 57, 21–36 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  62. H.M. Youssef, A.A. El-Bary, Thermoelastic material response due to laser pulse heating in context of four theorems of thermoelasticity. J. Therm. Stress. 37(12), 1379–1389 (2014)

    Article  Google Scholar 

  63. B.A. Hamidi, S.A. Hosseini, R. Hassannejad, F. Khosravi, Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green–Naghdi via nonlocal elasticity with surface energy effects. Eur. Phys. J. Plus 135(1), 1–20 (2020)

    Article  Google Scholar 

  64. H. Kumar, S. Mukhopadhyay, Response of deflection and thermal moment of Timoshenko microbeams considering modified couple stress theory and dual-phase-lag heat conduction model. Compos. Struct. 263, 113620 (2021)

    Article  Google Scholar 

  65. L. Li, Y. Hu, Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 107, 77–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the supports of National Science and Technology Major Project (2017ZX05008001-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Lu.

Appendices

Appendix A

$$ \begin{aligned} A_{1} & = \frac{1}{12}\left( \frac{h}{L} \right)^{2} \left( \frac{l}{L} \right)^{2} ,\quad A_{2} = K_{s} \left( \frac{G}{E} \right)\left( \frac{l}{L} \right)^{2} + \frac{1}{12}\left( \frac{h}{L} \right)^{2} ,\\ A_{3} &= K_{s} \left( \frac{G}{E} \right),\quad A_{4} = K_{s} \left( \frac{G}{E} \right)\left( \frac{l}{L} \right)^{2} , \\ A_{5} & = \frac{1}{12}\left( \frac{h}{L} \right)^{2} ,\quad A_{6} = \frac{1}{12}\left( \frac{h}{L} \right)^{2} \left( \frac{ea}{L} \right)^{2} ,\quad A_{7} = \left( \frac{ea}{L} \right)^{2} ,\quad A_{8} = \left( {\frac{{\tau_{1} }}{{\tau_{2} }}} \right)\left( \frac{h}{L} \right)^{2} , \\ A_{9} & = \pi^{2} \left( {\frac{{\tau_{1} }}{{\tau_{2} }}} \right),\quad A_{10} = \left( {\frac{{\tau_{q} }}{{\tau_{1} }}} \right)\left( \frac{h}{L} \right)^{2} ,\quad A_{11} = \left( \frac{h}{L} \right)^{2} + \pi^{2} \left( {\frac{{\tau_{T} }}{{\tau_{2} }}} \right) ,\\ A_{12} & = \left( {\frac{{\tau_{T} }}{{\tau_{2} }}} \right)\left( \frac{h}{L} \right)^{2} , \\ A_{13} & = \frac{{\Delta_{E} }}{1 - 2\nu }\left( {\frac{{\tau_{q} }}{{\tau_{1} }}} \right)\left( \frac{h}{L} \right)^{2} ,\quad A_{14} = \frac{{\Delta_{E} }}{1 - 2\nu }\left( \frac{h}{L} \right)^{2} \\ \end{aligned} $$
(A1)

Appendix B

$$ \begin{aligned} B_{1} & = C_{1} + C_{2} s^{2} ,\quad B_{2} = C_{3} ,\quad B_{3} = C_{4} ,\quad B_{4} = C_{5} + C_{6} s^{2} , \\ B_{5} & = C_{7} /\left( {s + \Omega \tau_{1} } \right),\quad B_{6} = C_{8} s + C_{9} s^{2} ,\quad B_{7} = C_{10} + C_{11} s + C_{12} s^{2} \\ \end{aligned} $$
(B1)

with

$$ \begin{aligned} C_{1} & = A_{1} \left( {n\pi } \right)^{4} + A_{2} \left( {n\pi } \right)^{2} + A_{3} ,\quad C_{2} = A_{6} \left( {n\pi } \right)^{2} + A_{5} ,\quad C_{3} = A_{4} \left( {n\pi } \right)^{3} + A_{3} \left( {n\pi } \right), \\ C_{4} & = A_{1} \left( {n\pi } \right)^{3} + A_{5} \left( {n\pi } \right),\quad C_{5} = A_{4} \left( {n\pi } \right)^{4} + A_{3} \left( {n\pi } \right)^{2} ,\quad C_{6} = A_{7} \left( {n\pi } \right)^{2} + 1, \\ C_{7} & = A_{5} , C_{8} = A_{13} \left( {n\pi } \right), \quad C_{9} = A_{14} \left( {n\pi } \right), \\ C_{10} & = A_{8} \left( {n\pi } \right)^{2} + A_{9} ,\quad C_{11} = A_{12} \left( {n\pi } \right)^{2} + A_{11} ,\quad C_{12} = A_{10} \\ \end{aligned} $$
(B2)

Appendix C

$$ a_{0} = C_{3} C_{7} C_{10} ,\quad a_{1} = C_{3} C_{7} C_{11} ,\quad a_{2} = C_{3} C_{7} C_{12} $$
(C1)
$$ \begin{aligned} b_{0} & = C_{1} C_{7} C_{10} ,\quad b_{1} = C_{1} C_{7} C_{11} + C_{4} C_{7} C_{8} ,\quad b_{2} = C_{1} C_{7} C_{12} + C_{2} C_{7} C_{10} + C_{4} C_{7} C_{9} , \\ b_{3} & = C_{2} C_{7} C_{11} ,\quad b_{4} = C_{2} C_{7} C_{12} \\ \end{aligned} $$
(C2)
$$ c_{1} = C_{3} C_{7} C_{8} ,\quad c_{2} = C_{3} C_{7} C_{9} $$
(C3)
$$ \begin{aligned} d_{0} & = C_{1} C_{5} C_{10} - C_{3}^{2} C_{10} ,\quad d_{1} = C_{1} C_{5} C_{11} + C_{4} C_{5} C_{8} - C_{3}^{2} C_{11} , \\ d_{2} & = C_{1} C_{5} C_{12} + C_{1} C_{6} C_{10} + C_{2} C_{5} C_{10} + C_{4} C_{5} C_{9} - C_{3}^{2} C_{12} , \\ d_{3} & = C_{1} C_{6} C_{11} + C_{2} C_{5} C_{11} + C_{4} C_{6} C_{8} , \\ d_{4} & = C_{1} C_{6} C_{12} + C_{2} C_{5} C_{12} + C_{2} C_{6} C_{10} + C_{4} C_{6} C_{9} , \\ d_{5} & = C_{2} C_{6} C_{11} ,\quad d_{6} = C_{2} C_{6} C_{12} \\ \end{aligned} $$
(C4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, W., Lu, Y. & Borjalilou, V. Size-dependent thermoelastic vibrations of Timoshenko nanobeams by taking into account dual-phase-lagging effect. Eur. Phys. J. Plus 136, 781 (2021). https://doi.org/10.1140/epjp/s13360-021-01785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01785-2

Navigation