Skip to main content
Log in

Inputs to produce lime mortar for conservation and restoration of Thanjavur Palace, India: characterization study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present study characterizes mortars from Thanjavur Palace (Thanjavur, India) to illustrate ancient production methods and the raw materials used. The mineralogical-petrographic composition of mortars was determined using optical microscopy, supported by scanning electron microscopy with energy-dispersive spectroscopy and X-ray powder diffraction. The chemical composition and organic content of the binder were also determined. The aggregate-binder ratio and particle size distribution of the mortars were investigated. Results showed that the composition of both the aggregate and binder varied between mortars. The aggregate consisted mainly of quartz, with small quantities of feldspar and individual grains of limestone and other lithic grains present. The majority of the mortars contained a lime binder, but kaolinite was also identified, indicating a clay binder. Kaolinite primarily occurred in bedding mortars rather than plaster mortars. All samples were in a deteriorated state due to the presence of gypsum and halite. Analysis of particle size distribution confirmed the size of the aggregates to range between 1.18 and 0.3 mm, showing that the aggregates must have been ground in order to allow for the dispersion of binders. Furthermore, biomolecules in the form of carbohydrates, proteins and fats, which could serve as natural admixtures to improve properties in both the fresh and hardened state, were identified in all mortar samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Figure. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: This manuscript has no associated data or the data will not be deposited.]

References

  1. D. Carran, J. Hughes, A. Leslie, C. Kennedy, A short history of the use of lime as a building material beyond Europe and North America. Int. J. Architect. Heritage 6(2), 117–146 (2012). https://doi.org/10.1080/15583058.2010.511694

    Article  Google Scholar 

  2. R.P.J. Van Hees, L. Binda, I. Papayianni, E. Toumbakari, Characterisation and damage analysis of old mortars. Mater. Struct. 37(273), 644–648 (2004)

    Article  Google Scholar 

  3. A. Arizzi, G. Cultrone, Aerial lime-based mortars blended with a pozzolanic additive and different admixtures: a mineralogical, textural and physical-mechanical study. Constr. Build. Mater. 31, 135–143 (2012). https://doi.org/10.1016/j.conbuildmat.2011.12.069

    Article  Google Scholar 

  4. I. Papayianni, M. Stefanidou, Durability aspects of ancient mortars of the archeological site of Olynthos. J. Cult. Herit. 8(2), 193–196 (2007). https://doi.org/10.1016/j.culher.2007.03.001

    Article  Google Scholar 

  5. A. Moropoulou, A. Bakolas, S. Anagnostopoulou, Composite materials in ancient structures. Cem. Concr. Compos. 27(2), 295–300 (2005). https://doi.org/10.1016/j.cemconcomp.2004.02.018

    Article  Google Scholar 

  6. S. Sánchez-Moral, L. Luque, J.C. Canaveras, V. Soler, J. Garcia-Guinea, A. Aparicio, Lime–pozzolana mortars in Roman catacombs: composition, structures and restoration. Cement Concr. Res. 35(8), 1555–1565 (2005). https://doi.org/10.1016/j.cemconres.2004.08.009

    Article  Google Scholar 

  7. M.D. Jackson, S.R. Chae, S.R. Mulcahy, C. Meral, R. Taylor, P. Li, A.H. Emwas, J. Moon, S. Yoon, G. Vola, H.R. Wenk, Unlocking the secrets of Al-tobermorite in Roman seawater concrete. Am. Miner. 98(10), 1669–1687 (2013). https://doi.org/10.2138/am.2013.4484

    Article  ADS  Google Scholar 

  8. M.D. Jackson, J. Moon, E. Gotti, R. Taylor, S.R. Chae, M. Kunz, A.H. Emwas, C. Meral, P. Guttmann, P. Levitz, H.R. Wenk, Material and elastic properties of Al-tobermorite in ancient Roman seawater concrete. J. Am. Ceram. Soc. 96(8), 2598–2606 (2013). https://doi.org/10.1111/jace.12407

    Article  Google Scholar 

  9. M.D. Jackson, S.R. Mulcahy, H. Chen, Y. Li, Q. Li, P. Cappelletti, H.R. Wenk, Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. Am. Miner. 102(7), 1435–1450 (2017). https://doi.org/10.2138/am-2017-5993CCBY

    Article  ADS  Google Scholar 

  10. S. Kramar, V. Zalar, M. Urosevic, W. Körner, A. Mauko, B. Mirtič, J. Lux, A. Mladenović, Mineralogical and microstructural studies of mortars from the bath complex of the Roman villa rustica near Mošnje (Slovenia). Mater. Charact. 62(11), 1042–1057 (2011). https://doi.org/10.1016/j.matchar.2011.07.019

    Article  Google Scholar 

  11. E. Uğurlu, H. Böke, The use of brick–lime plasters and their relevance to climatic conditions of historic bath buildings. Constr. Build. Mater. 23(6), 2442–2450 (2009). https://doi.org/10.1016/j.conbuildmat.2008.10.005

    Article  Google Scholar 

  12. P. Maravelaki-Kalaitzaki, A. Bakolas, I. Karatasios, V. Kilikoglou, Hydraulic lime mortars for the restoration of historic masonry in Crete. Cement Concr. Res. 35(8), 1577–1586 (2005). https://doi.org/10.1016/j.cemconres.2004.09.001

    Article  Google Scholar 

  13. H. Böke, S. Akkurt, B. İpekoğlu, E. Uğurlu, Characteristics of brick used as aggregate in historic brick-lime mortars and plasters. Cement Concrete Res. 36(6), 1115–1122 (2006). https://doi.org/10.1016/j.cemconres.2006.03.011

    Article  Google Scholar 

  14. P. Vitruvius, Ten books on architecture. (Translation by Ingrid D. Rowland, 2001).

  15. E. Vejmelková, M. Keppert, P. Rovnaníková, Z. Keršner, R. Černý, Application of burnt clay shale as pozzolan addition to lime mortar. Cement Concr. Compos. 34(4), 486–492 (2012). https://doi.org/10.1016/j.cemconcomp.2012.01.001

    Article  Google Scholar 

  16. L.B. Sickels, Mortars in Old buildings and in Masonry conservation: a historical and practical treatise (Doctoral dissertation, The University of Edinburgh (United Kingdom)) (1988)

  17. D.S. Mitchell, The use of lime and cement in traditional buildings (2007)

  18. F. Yang, B. Zhang, C. Pan, Y. Zeng, Traditional mortar represented by sticky rice lime mortar—one of the great inventions in ancient China. Sci. China Ser. E: Technol. Sci. 52(6), 1641–1647 (2009). https://doi.org/10.1007/s11431-008-0317-0

    Article  ADS  Google Scholar 

  19. F. Yang, B. Zhang, Q. Ma, Study of sticky rice−lime mortar technology for the restoration of historical masonry construction. Acc. Chem. Res. 43(6), 936–944 (2010). https://doi.org/10.1021/ar9001944

    Article  Google Scholar 

  20. C. Fiori, M. Vandini, S. Prati, G. Chiavari, Vaterite in the mortars of a mosaic in the Saint Peter basilica, Vatican (Rome). J. Cult. Heritage 10(2), 248–257 (2009). https://doi.org/10.1016/j.culher.2008.07.011

    Article  Google Scholar 

  21. Y. Zeng, B. Zhang, X. Liang, A case study and mechanism investigation of typical mortars used on ancient architecture in China. Thermochim. Acta 473(1–2), 1–6 (2008). https://doi.org/10.1016/j.tca.2008.03.019

    Article  Google Scholar 

  22. S. Fang, H. Zhang, B. Zhang, G. Li, A study of Tung-oil–lime putty—a traditional lime-based mortar. Int. J. Adhesion Adhesives 48, 224–230 (2014). https://doi.org/10.1016/j.ijadhadh.2013.09.034

    Article  Google Scholar 

  23. C. Nunes, Z. Slížková, Hydrophobic lime-based mortars with linseed oil: characterization and durability assessment. Cem. Concr. Res. 61, 28–39 (2014). https://doi.org/10.1016/j.cemconres.2014.03.011

    Article  Google Scholar 

  24. L. Ventolà, M. Vendrell, P. Giraldez, L. Merino, Traditional organic additives improve lime mortars: new old materials for restoration and building natural stone fabrics. Constr. Build. Mater. 25(8), 3313–3318 (2011). https://doi.org/10.1016/j.conbuildmat.2011.03.020

    Article  Google Scholar 

  25. S. Thirumalini, Heritage lime mortar characterisation and simulation (2015)

  26. R. Ravi, S. Thirumalini, N. Taher, Analysis of ancient lime plasters–Reason behind longevity of the Monument Charminar, India a study. J. Build. Eng. 20, 30–41 (2018). https://doi.org/10.1016/j.jobe.2018.04.010

    Article  Google Scholar 

  27. A.S. Nene, Building materials and construction techniques of ancient India. New Delhi, India, Ganga (2012)

  28. S. Chandra, History of Architecture and Ancient Building Materials in India: Part I & Part II (in Single Volume) (Tech Books Int, New Delhi, 2003)

    Google Scholar 

  29. S. Pradeep, T. Selvaraj, Identification of bio-minerals and their origin in lime mortars of ancient monument: Thanjavur Palace. Int. J. Architect. Heritage 15(3), 426–436 (2019). https://doi.org/10.1080/15583058.2019.1623341

    Article  Google Scholar 

  30. F.M. León-Martínez, P.D.J. Cano-Barrita, F. Castellanos, K.B. Luna-Vicente, S. Ramírez-Arellanes, C. Gómez-Yáñez, Carbonation of high-calcium lime mortars containing cactus mucilage as additive: a spectroscopic approach. J. Mater. Sci. 56(5), 3778–3789 (2021). https://doi.org/10.1007/s10853-020-05514-5

    Article  ADS  Google Scholar 

  31. S. Thirumalini, R. Ravi, S.K. Sekar, M. Nambirajan, Knowing from the past–ingredients and technology of ancient mortar used in Vadakumnathan temple, Tirussur, Kerala, India. J. Build. Eng. 4, 101–112 (2015). https://doi.org/10.1016/j.jobe.2015.09.004

    Article  Google Scholar 

  32. B. Middendorf, J.J. Hughes, K. Callebaut, G. Baronio, I. Papayianni, Investigative methods for the characterisation of historic mortars—part 2: chemical characterisation. Mater. Struct. 38(8), 771–780 (2005). https://doi.org/10.1007/BF02479290

    Article  Google Scholar 

  33. E.C. Eckel, Cements, Limes and Plaster (Routledge, 2015)

    Book  Google Scholar 

  34. H.F. Taylor, Cement Chemistry, vol. 2 (Thomas Telford, London, 1997)

    Book  Google Scholar 

  35. IS:2386 (Part I)—1975. Method of Test for Aggregate and Concrete-Particle Size and Shape. Bureau of Indian Standard, New Delhi, India (1991)

  36. IS:7874 (Part I)—1975. Methods of Tests for Animal Feeds and Feeding Stuffs. Bureau of Indian Standard, New Delhi, India (1991)

  37. K.M. Haneefa, S.D. Rani, R. Ramasamy, M. Santhanam, Microstructure and geochemistry of lime plaster mortar from a heritage structure. Constr. Build. Mater. 225, 538–554 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.159

    Article  Google Scholar 

  38. V. Selvakumar, Prehistoric and historical archaeology of the lower Kaviri Valley and Pudukottai Region, Tamil Nadu, in Proceedings of the Indian History Congress, vol 69, (2008), pp. 1015–1023 (2008). Indian History Congress. https://www.jstor.org/stable/44147262

  39. B. Lubelli, T.G. Nijland, R.P.J. Van Hees, Self-healing of lime-based mortars: microscopy observations on case studies. Heron 56 (1/2) (2011)

  40. J.M.P.Q. Delgado, A.S. Guimarães, V.P. De Freitas, I. Antepara, V. Kočí, R. Černý, Salt damage and rising damp treatment in building structures. Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/2016/1280894

    Article  Google Scholar 

  41. O. Cazall, C. Rodriguez-Navarro, E. Sebastian, G. Cultrone, M.J. De la Torre, Aging of lime putty: effects on traditional lime mortar carbonation. J. Am. Ceramic Soc. 83(5), 1070–1076 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01332.x

    Article  Google Scholar 

  42. K. Elert, C. Rodriguez-Navarro, E.S. Pardo, E. Hansen, O. Cazalla, Lime mortars for the conservation of historic buildings. Stud. Conserv. 47(1), 62–75 (2002). https://doi.org/10.1179/sic.2002.47.1.62

    Article  Google Scholar 

  43. G. Cultrone, E. Sebastián, M.O. Huertas, Forced and natural carbonation of lime-based mortars with and without additives: mineralogical and textural changes. Cem. Concr. Res. 35(12), 2278–2289 (2005). https://doi.org/10.1016/j.cemconres.2004.12.012

    Article  Google Scholar 

  44. A. Moropoulou, A. Cakmak, K.C. Labropoulos, R. Van Grieken, K. Torfs, Accelerated microstructural evolution of a calcium-silicate-hydrate (CSH) phase in pozzolanic pastes using fine siliceous sources: comparison with historic pozzolanic mortars. Cement Concrete Res. 34(1), 1–6 (2004). https://doi.org/10.1016/S0008-8846(03)00187-X

    Article  Google Scholar 

  45. R. Ravi, S. Thirumalini, Effect of natural polymers from cissus glauca roxb on the mechanical and durability properties of hydraulic lime mortar. Int. J. Architect. Heritage 13(2), 229–243 (2019). https://doi.org/10.1080/15583058.2018.1431732

    Article  Google Scholar 

  46. R. Ramadoss, A. Ahamed, T. Selvaraj, Alternative approach for traditional slaking and grinding of air lime mortar for restoration of heritage structures: natural polymer. J. Architect. Eng. 25(3), 04019017 (2019). https://doi.org/10.1061/(ASCE)AE.1943-5568.0000361

    Article  Google Scholar 

  47. S. Jayasingh, T. Selvaraj, Effect of natural herbs on hydrated phases of lime mortar. J. Architect. Eng. (2020). https://doi.org/10.1061/(ASCE)AE.1943-5568.0000420

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Slovenian Research Agency (research core funding No. P2−0273 and P1-0195)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirumalini Selvaraj.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolenec, M., Dolenec, S., Saridhe, S.P. et al. Inputs to produce lime mortar for conservation and restoration of Thanjavur Palace, India: characterization study. Eur. Phys. J. Plus 136, 929 (2021). https://doi.org/10.1140/epjp/s13360-021-01897-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01897-9

Navigation