Skip to main content
Log in

Quantum thermodynamic pump driven by Maxwell’s demon

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

By considering the actual equivalent circuit model of three quantum dots with Coulomb coupling, a thermodynamic pump driven by Maxwell’s demon is proposed. The pump may be a quantum chemical pump operated between two material reservoirs or a quantum heat pump operated between two heat reservoirs, and the demon may be a subsystem operated between two heat reservoirs or between two material reservoirs. The Markov stochastic thermodynamics is used to analyze how information is generated in the demon, which drives the mass or heat transfer in the pump. Nonequilibrium free energy theorems demonstrate that the information provided by Maxwell’s demon makes the quantum pump work normally without energy input. It is proved that the proposed system does not violate the second law of thermodynamics. Moreover, the modified entropy-production rate containing information flow and the local rates of nonequilibrium free energy of quantum pumps are calculated. The results obtained may be helpful to the deep understanding of the inter-conversion of both information and work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Zhang, J. Ren, B. Li, Multiresonance of energy transport and absence of heat pump in a force-driven lattice. Phys. Rev. E 84, 031122 (2011)

    Article  ADS  Google Scholar 

  2. M. van den Broek, C. Van den Broeck, Chiral Brownian heat pump. Phys. Rev. Lett. 100, 130601 (2008)

    Article  Google Scholar 

  3. D. Segal, A. Nitzan, Molecular heat pump. Phys. Rev. E 73, 026109 (2006)

    Article  ADS  Google Scholar 

  4. J.F.G. Santos, Gravitational quantum well as an effective quantum heat engine. Eur. Phys. J. Plus 133, 321 (2018)

    Article  Google Scholar 

  5. Y. Dong, F. Bariani, P. Meystre, Phonon cooling by an optomechanical heat pump. Phys. Rev. Lett. 115, 223602 (2015)

    Article  ADS  Google Scholar 

  6. L. Correa, Multistage quantum absorption heat pumps. Phys. Rev. E 89, 042128 (2014)

    Article  ADS  Google Scholar 

  7. S.S. Qiu, Z.M. Ding, L.G. Chen et al., Optimal performance region of energy selective electron cooling devices consisting of three reservoirs. Eur. Phys. J. Plus 134, 273 (2019)

    Article  Google Scholar 

  8. J.C. Chen, Z.J. Yan, Equivalent combined systems of three-heat-source heat pumps. J. Chem. Phys. 90, 4951 (1989)

    Article  ADS  Google Scholar 

  9. G.X. Lin, J.C. Chen, B. Hua, General performance characteristics of an irreversible three source chemical pump. Energ. Convers. Manag. 44, 1719–1731 (2003)

    Article  Google Scholar 

  10. D. Xia, L. Chen, F. Sun, C. Wu, Endoreversible four-reservoir chemical pump. Appl. Energy 84, 56–65 (2007)

    Article  Google Scholar 

  11. J.C. Guo, Y. Wang, J.C. Chen, General performance characteristics and parametric optimum bounds of irreversible chemical engines. J. Appl. Phys. 112, 103504 (2012)

    Article  ADS  Google Scholar 

  12. S.W. Kim, T. Sagawa, S.D. Liberato, M. Ueda, Quantum Szilard engine. Phys. Rev. Lett. 106, 070401 (2011)

    Article  ADS  Google Scholar 

  13. J. Bengtsson, M.N. Tengstrand, A. Wacker, P. Samuelsson, M. Ueda, H. Linke, S.M. Reimann, Quantum Szilard engine with attractively interacting bosons. Phys. Rev. Lett. 120, 100601 (2018)

    Article  ADS  Google Scholar 

  14. C.Y. Cai, H. Dong, C.P. Sun, Multiparticle quantum Szilard engine with optimal cycles assisted by a Maxwell’s demon. Phys. Rev. E 85, 031114 (2012)

    Article  ADS  Google Scholar 

  15. H. Dong, D.Z. Xu, C.Y. Cai, C.P. Sun, Quantum Maxwell’s demon in thermodynamic cycles. Phys. Rev. E 83, 061108 (2011)

    Article  ADS  Google Scholar 

  16. S. Lloyd, Quantum-mechanical Maxwell’s demon. Phys. Rev. A 56, 3374 (1997)

    Article  ADS  Google Scholar 

  17. S. Lloyd, Use of mutual information to decrease entropy: Implications for the second law of thermodynamics. Phys. Rev. A 39, 5378 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  18. P. Strasberg, G. Schaller, T. Brandes, M. Esposito, Thermodynamics of a physical model implementing a Maxwell Demon. Phys. Rev. Lett. 110, 040601 (2013)

    Article  ADS  Google Scholar 

  19. P. Strasberg, G. Schaller, T. Brandes, M. Esposito, Quantum and information thermodynamics: a unifying framework based on repeated interactions. Phys. Rev. X 7, 021003 (2017)

    Google Scholar 

  20. S. Yamamoto, S. Ito, N. Shiraishi, T. Sagawa, Linear irreversible thermodynamics and Onsager reciprocity for information-driven engines. Phys. Rev. E 94, 052121 (2016)

    Article  ADS  Google Scholar 

  21. J.V. Koski, V.F. Maisi, T. Sagawa, J.P. Pekola, Experimental observation of the role of mutual information in the nonequilibrium dynamics of a Maxwell Demon. Phys. Rev. Lett. 113, 030601 (2014)

    Article  ADS  Google Scholar 

  22. K. Ptaszyński, M. Esposito, Thermodynamics of quantum information flows. Phys. Rev. Lett. 122, 150603 (2019)

    Article  ADS  Google Scholar 

  23. K. Ptaszyński, Autonomous quantum Maxwell’s demon based on two exchange-coupled quantum dots. Phys. Rev. E 97, 012116 (2018)

    Article  ADS  Google Scholar 

  24. R. Sánchez, P. Samuelsson, P.P. Potts, Autonomous conversion of information to work in quantum dots. Phys. Rev. Res. 1, 033066 (2019)

    Article  Google Scholar 

  25. Y.C. Zhang, G.X. Lin, J.C. Chen, Three-terminal quantum-dot refrigerators. Phys. Rev. E 91, 052118 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. R.C. Dynes, V. Narayanamurti, J.P. Garno, Direct Measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509 (1978)

    Article  ADS  Google Scholar 

  27. R. Sánchez, M. Büttiker, Optimal energy quanta to current conversion. Phys. Rev. B 83, 085428 (2011)

    Article  ADS  Google Scholar 

  28. J.M.R. Parrondo, J.M. Horowitz, T. Sagawa, Thermodynamics of information. Nat. Phys. 11, 131–139 (2015)

    Article  Google Scholar 

  29. U. Seifert, Stochastic thermodynamics: from principles to the cost of precision. Physica A 504, 176–191 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  30. U. Seifert, Stochastic thermodynamics: principles and perspectives. Eur. Phys. J. B 64, 423–431 (2008)

    Article  ADS  MATH  Google Scholar 

  31. M. Esposito, Stochastic thermodynamics under coarse graining. Phys. Rev. E 85, 041125 (2012)

    Article  ADS  Google Scholar 

  32. M.J. Ma, M.B.A. Jalil, S.G. Tan, Sequential tunneling through a two-level semiconductor quantum dot system coupled to magnetic leads. J. Appl. Phys. 104, 053902 (2008)

    Article  ADS  Google Scholar 

  33. M. Thorwart, R. Egger, M. Grifoni, Correlated sequential tunneling through a double barrier for interacting one-dimensional electrons. Phys. Rev. B 72, 035330 (2005)

    Article  ADS  Google Scholar 

  34. K. Szczygielski, D. Gelbwaser-Klimovsky, R. Alicki, Markovian master equation and thermodynamics of a two-level system in a strong laser field. Phys. Rev. E 87(1), 012120 (2013)

    Article  ADS  Google Scholar 

  35. T. Albash, S. Boixo, D.A. Lidar, P. Zanardi, Quantum adiabatic Markovian master equations. New J. Phys. 14, 123016 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. E. Bonet, M.M. Deshmukh, D.C. Ralph, Solving rate equations for electron tunneling via discrete quantum states. Phys. Rev. B 65, 045317 (2002)

    Article  ADS  Google Scholar 

  37. A.F. Izmaylov, D. Mendive-Tapia, M.J. Bearpark, M.A. Robb, J.C. Tully, M.J. Frisch, Nonequilibrium Fermi golden rule for electronic transitions through conical intersections. J. Chem. Phys. 135, 234106 (2011)

    Article  ADS  Google Scholar 

  38. R. Alicki, The Markov master equations and the Fermi golden rule. International J. Theor. Phys. 16, 351–355 (1977)

    Article  ADS  MATH  Google Scholar 

  39. A.K. Manna, B.D. Dunietz, Charge-transfer rate constants in zinc-porphyrin-porphyrin-derived dyads: a Fermi golden rule first-principles-based study. J. Chem. Phys. 141, 121102 (2014)

    Article  ADS  Google Scholar 

  40. N. Ubbelohde, C. Fricke, C. Flindt, F. Hohls, R.J. Haug, Measurement of finite-frequency current statistics in a single electron transistor. Nat. Commun. 3, 612 (2012)

    Article  ADS  Google Scholar 

  41. W. Lu, Z. Ji, L. Pfeiffer, K.W. West, A.J. Rimberg, Real-time detection of electron tunnelling in a quantum dot. Nature 423, 422 (2003)

    Article  ADS  Google Scholar 

  42. T. Fujisawa, T. Hayashi, R. Tomita, Y. Hirayama, Bidirectional counting of single electrons. Science 312, 1634 (2006)

    Article  ADS  Google Scholar 

  43. T.E. Humphrey, R. Newbury, R.P. Taylor, Reversible quantum Brownian heat engines for electrons. Phys. Rev. Lett. 89(11), 116801 (2002)

    Article  ADS  Google Scholar 

  44. R.G. Endres, Entropy production selects nonequilibrium states in multistable systems. Sci. Rep. 7, 14437 (2017)

    Article  ADS  Google Scholar 

  45. H. Dolatkhah, A.S. Khorashad, S. Haseli, The entropy production for thermal operations. Sci. Rep. 10, 9757 (2020)

    Article  ADS  Google Scholar 

  46. C.S. Lent, Quantum operator entropies under unitary evolution. Phys. Rev. E 100, 012101 (2019)

    Article  ADS  Google Scholar 

  47. V.N. Chernega, M. Olga, V.I. Man’ko, Deformed entropy and information relations for composite and noncomposite systems. Found. Phys. 45(7), 783–798 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. J.M. Horowitz, M. Esposito, Thermodynamics with continuous information flow. Phys. Rev. X 4, 031015 (2014)

    Google Scholar 

  49. G. Schaller, Open Quantum Systems Far from Equilibrium (Springer, New York, 2014)

    Book  MATH  Google Scholar 

  50. M. Esposito, G. Schaller, Stochastic thermodynamics for “Maxwell demon” feedbacks. Europhys. Lett. 99, 30003 (2012)

    Article  ADS  Google Scholar 

  51. M. Bauer, F. Cornu, Local detailed balance: a microscopic derivation. J. Phys. A: Math. Theory 48, 015008 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (John Wiley & Sons, New York, 1985)

    MATH  Google Scholar 

  53. G. Benenti, G. Casati, K. Saito, R.S. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1–124 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. A.D. Vos, Endoreversible thermodynamics and chemical reactions. J. Phys. Chem. 95(11), 4534–4540 (1991)

    Article  Google Scholar 

  55. A.D. Vos, The endoreversible theory of solar energy conversion: a tutorial. Sol. Energ. Mat. Sol. C. 31, 75–93 (1993)

    Article  Google Scholar 

  56. L.G. Chen, H.J. Feng, Y.L. Ge, Maximum energy output chemical pump configuration with an infinite-low and a finite high chemical potential mass reservoirs. Energy Converse Manag 223, 113261 (2020)

    Article  Google Scholar 

Download references

Funding

This work has been supported by the National Natural Science Foundation of China (Grant No. 11805159) and the Natural Science Foundation of Fujian Province of China (No. 2019J05003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanhe Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Du, J., Su, S. et al. Quantum thermodynamic pump driven by Maxwell’s demon. Eur. Phys. J. Plus 136, 1059 (2021). https://doi.org/10.1140/epjp/s13360-021-02027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02027-1

Navigation