Skip to main content
Log in

Effective utilization of green synthesized CuO nanoparticles for the preparation of keto-1,2,3-triazole analogues of protected amino acids/dipeptide acids and recyclable catalyst for the optimization and kinetic study of biodiesel production

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Heterogeneous nano-copper oxide catalyst was prepared via a simple eco-friendly, solution combustion method using novel seed extract of Terminalia bellirica and characterized by various techniques like powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, ultraviolet–visible spectroscopy, and Brunauer–Emmett–Teller analysis. The prepared catalyst demonstrated a greater catalytic activity towards the synthesis of Nα-protected amino keto-1,2,3-triazoles analogues via the three-component reaction among amino acyl chloride derivatives of protected amino acids/dipeptide acids, phenylacetylene and sodium azide. Further, synthesized CuO nanoparticles were evaluated for their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium and Bacillus subtilis, revealed that nano-CuO have significant activity. In addition, nano-CuO showed an excellent catalytic activity in biodiesel production optimization from Terminalia bellirica oil and achieved 97% yield of Terminalia bellirica methyl ester/biodiesel with optimum conditions of 3.5 wt% catalyst loading, 9:1 methanol-to-oil molar ratio, 65 °C temperature and 60 min reaction time. From the kinetic study of biodiesel production at different temperatures activation energy (Ea) of 38.06 kJ/mol and frequency factor (A) of 2.2 × 104 min−1 was observed. The fuel properties of produced biodiesel were in the range of ASTM standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data provided in the manuscript are available in the request by contacting with the corresponding author.]

Abbreviations

PXRD:

Powder X-ray diffraction

UV–visible:

Ultraviolet–visible spectroscopy

BET:

Brunauer–Emmett–Teller

CuO NPs:

Copper oxide nanoparticles

TBME:

Terminalia bellirica Methyl ester

FTIR:

Fourier transform infrared spectroscopy

SEM:

Scanning electron microscopy

Ea:

Activation energy

A:

Frequency factor

CuSO4 :

Copper sulphate

Cu(NO3)2 :

Cupric nitrate

Fe2O3 :

Ferric oxide

ZnO:

Zinc oxide

Ag/ZnO:

Silver doped zinc oxide

Mg/ZnO:

Magnesium doped zinc oxide

BJH:

Barrett–Joyner–Halenda

1H NMR:

Proton Nuclear Magnetic Resonance Spectroscopy

13C NMR:

Carbon-13 Nuclear Magnetic Resonance Spectroscopy

DMSO:

Dimethylsulphoxide

TLC:

Thin-layer chromatography

FFA:

Free fatty acids

JCPDS:

Joint Committee on Powder Diffraction Standards

MIC:

Minimum Inhibitory Concentration

MBC:

Minimum Bacterial Concentration

HPLC:

High-performance liquid chromatography

R:

Universal gas constant (8.314 J mol1 K1)

ASTM:

American Society for Testing and Materials

References

  1. D. Astruc, Wiley-VCH, Weinheim, Germany, (2008).

  2. N. Salisu, Z.H. Mohd, Z. Zulkarnain, A.Y. Nor, Materials 11(2), 295 (2018)

    Article  Google Scholar 

  3. S.F.X. Yin, B.O. Xu, S.J. Wang, C.F.C.T. Ng, Cat. Lett. 96, 113 (2004)

    Article  Google Scholar 

  4. M. Wen, G. Li, H. Liu, J. Chen, T. An, H. Yamashita, Environ. Sci. NANO 6, 1006–1025 (2019)

    Article  Google Scholar 

  5. R.S. Varma, Green Chem. 1, 43 (1999)

    Article  Google Scholar 

  6. R. Abdel-Karim, Y. Reda, A. Abdel-Fattah, J. Electrochem. Soc. 167, 037554 (2020)

    Article  ADS  Google Scholar 

  7. S.M. Moghimi, A.C. Hunter, J.C. Murray, FASEB J. 19, 311 (2005)

    Article  Google Scholar 

  8. S.K. Yip, J.A. Sauls, Phys. Rev. Lett. 69, 2264 (1992)

    Article  ADS  Google Scholar 

  9. S.S. Khwaja, H. Azamal, Biomater. Res. 24, 11 (2020)

    Article  Google Scholar 

  10. V. Sudha, G. Murugadoss, R. Thangamuthu, Sci. Rep. 11, 3413 (2021)

    Article  ADS  Google Scholar 

  11. R.V. Kumar, R. Elgamiel, Y. Diamant, A. Gedanken, L.J. Norwig, Adv. Mat. Phys. Chem. 17, 1406 (2001)

    Google Scholar 

  12. J. Saquf, J. Mohsan, U.H. Najam, A. Shahbaz, H. Muhammad, Mater. Res. Express 5, 045006 (2018)

    Article  Google Scholar 

  13. S Nations, M. Long, M. Wages, J.D. Maul, C.W. Theodorakis, G.P. Cobb, Chemosphere. 135, 166 (2015)

    Article  ADS  Google Scholar 

  14. S. Mahmoodi, A. Elmi, S. Hallaj-Nezhadi, J. Mol. Pharm. Org. Process. Re 6, 140 (2018)

    Google Scholar 

  15. K. Manab, K. Gopalu, K. Evgeny, V. Mikhail, D.K. Gorshenkov, J. Cluster Sci. 28, 1595 (2017)

    Article  Google Scholar 

  16. E.G. Madalina, R.B. Elena, M.H. Alina, C.G. Monica, M.G. Alexandru, Pharmaceuticals (Basel). 9(4), 75 (2016)

    Article  Google Scholar 

  17. N. Verma, N. Kumar, ACS Biomater. Sci. Eng. 5(3), 1170–1188 (2019)

    Article  Google Scholar 

  18. K. Siddique, B. Karmakar, Int. J. Nanosci. 12, 1350036 (2013)

    Article  Google Scholar 

  19. H. Wang, J.Z. Xu, J.J. Zhu, H.Y. Chen, J. Crystal Growth. 44, 88 (2002)

    Article  ADS  Google Scholar 

  20. M. Salavati, F. Davar, Mater. Lett. 63, 441 (2009)

    Article  Google Scholar 

  21. J.B. Borgohain, M.V. Singh, T. Ramarao, S. Shripathi, Mahamuni, quantum size effects in CuO nanoparticles. Phys. Rev. 61, 11093 (2000)

    Article  Google Scholar 

  22. J.F. Xu, W. Ji, Z.X. Shen, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, J. Solid State Chem. 147, 516 (2000)

    Article  ADS  Google Scholar 

  23. W.A. Worku, K.S. Fedlu, T.M. Endale, H.B. Hadgu, A.G. Bedasa, J. Nanotechnol. 10, 106 (2020)

    Google Scholar 

  24. M. Kaur, A. Tovstolytkin, G.S. Lotey, Elect. Mat. Let. 14, 370 (2018)

    Article  Google Scholar 

  25. D. Letchumanan, S.P.M. Sok, S. Ibrahim, N.H. Nagoor, N.M. Arshad, Biomol. 11, 564 (2021)

    Google Scholar 

  26. X. Song, S. Sun, W. Zhang, Z. Yin, J. Colloid Interface Sci. 273, 463 (2004)

    Article  ADS  Google Scholar 

  27. J.P. Chen, L.L. Lim, Chemosphere 49, 363 (2002)

    Article  ADS  Google Scholar 

  28. D. Mott, J. Galkowski, L.Y. Wang, J. Luo, C.J. Zhong, Langmuir 23, 5740 (2007)

    Article  Google Scholar 

  29. H. Omar, A. Elkader, N.M. Deraz, Int. J. Electrochem. Sci. 8, 8614 (2013)

    Google Scholar 

  30. M. Outokesh, M. Hosseinpour, S.J. Ahmadi, T. Mousavand, S. Sadjadi, W. Soltanian, Ind. Engg. Chem. Res. 50, 3540 (2011)

    Article  Google Scholar 

  31. S. Rakesh, S. Meeta, A.K. Arif, Terminalia belerica Roxb. seed oil: a potential biodiesel resource. Biooresour. Technol. 101, 1380 (2010)

    Article  Google Scholar 

  32. H.O. Preben, R.S. Anders, U. Birgitte, K. Peter, N.B. Andrew, E. Ulrich, B.F. Hansen, J. Med. Chem. 46, 3333 (2003)

    Article  Google Scholar 

  33. S. Velazquez, R. Alvarez, C. Perez, F. Gago, E. De Clercq, J. Balzarini, M.J. Camarasa, Antivir. Chem. Chemothe. 9, 481 (1998)

    Article  Google Scholar 

  34. A. Kamal, S. Prabhakar, M.J. Ramaiah, P.V. Reddy, C.R. Reddy, A. Mallareddy, N. Shankaraiah, T.L.N. Reddy, S.N.C.V.L. Pushpavalli, M. Pal-Bhadra, Eur. J. Med. Chem. 46, 3820 (2011)

    Article  Google Scholar 

  35. D.R. Buckle, C.J.M. Rockell, H. Smith, B.A. Spicer, J. Med. Chem. 29, 2262 (1986)

    Article  Google Scholar 

  36. C. Menendez, A. Chollet, F. Rodriguez, C. Inard, M.R. Pasca, C. Lherbet, M. Baltas, Eur. J. Med. Chem. 52, 75 (2012)

    Article  Google Scholar 

  37. G. Ravi, A.R. Nath, A. Nagaraj, S. Damodhar, G.N. Rao, Der Pharm. Chem. 6, 223 (2014)

    Google Scholar 

  38. L.L. Brockunier, E.R. Parmee, H.O. Ok, M.R. Candelore, M.A. Cascieri, L.F. Colwell, L. Deng, W.P. Feeney, M.J. Forrest, G.J. Hom, D.E. MacIntyre, L. Tota, M.J. Wyvratt, M.H. Fisher, A.E. Weber, Bioorg. Med. Chem. Lett. 10, 2111 (2000)

    Article  Google Scholar 

  39. G.C. Tron, T. Pirali, R.A. Billington, P.L. Canonico, G. Sorbaand, A.A. Genazzani, Med. Res. Rev. 28, 278 (2008)

    Article  Google Scholar 

  40. W.Q. Fan, A.R. Katritzky, 1st Ed. Elsevier: Oxford, p 12500 (2008).

  41. K. Bozorov, J. Zhao, H.A. Aisa, Bioorg. Med. Chem. 27, 3511 (2019)

    Article  Google Scholar 

  42. R. Huisgen, Ang. Chem. Int. Ed. 2, 565 (1963)

    Article  Google Scholar 

  43. R. Huisgen, Wiley: New York, 1–176 (1984).

  44. L. Maiuolo, V. Algieri, F. Olivito, D. Nino, Catalysts 10, 65 (2020)

    Article  Google Scholar 

  45. L. Maiuolo, V. Algieri, F. Olivito, A. De Nino, Catalysts 10(1), 65 (2020)

    Article  Google Scholar 

  46. J.C. Castillo, N.F. Bravo, L.V. Tamayo, P.D. Mestizo, J. Hurtado, M. Macías, J. Portilla, ACS Omega 5, 30148 (2020)

    Article  Google Scholar 

  47. S.G. Agalave, S.R. Maujan, V.S. Pore, Chem. An Asian J. 6, 2696 (2011)

    Article  Google Scholar 

  48. C. Chen, X.L.M.C. Holland, L.V. Shichang, J. Xuebao, W. Liu, J. Liu, D. Depre, P. Westerduin, Eur. J. Org. Chem. 5, 548 (2020)

    Article  Google Scholar 

  49. V.A. Bakulev, T.A. Beryozkina, Chem. Heterocycl. Comp. 52, 4 (2016)

    Article  Google Scholar 

  50. Y. Liu, F. Zhao, H. Zhou, K. Xie, Y. Jiang, J. Chem. Sci. 129, 289 (2017)

    Article  Google Scholar 

  51. S.R. Kale, S.S. Kahandal, M.B. Gawande, R.V. Jayaram, RSC Adv. 3, 8184 (2013)

    Article  ADS  Google Scholar 

  52. V.V. Sureshbabu, N. Narendra, H.P. Hemantha, G. Chennakrishnareddy, Protein Pept. Lett. 17, 499 (2010)

    Article  Google Scholar 

  53. A. Mandoli, Molecules 21, 1174 (2016)

    Article  Google Scholar 

  54. M.N. Tchoul, S.P. Fillery, H. Koerner, L.F. Drummy, F.T. Oyerokun, P.A. Mirau, M.F. Durstock, R.A. Vaia, Chem. Mater. 22, 1749 (2010)

    Article  Google Scholar 

  55. S.G. Agalave, S.G. Pharande, S.M. Gade, Asian J. Org. Chem. 4, 943 (2015)

    Article  Google Scholar 

  56. S. Jian, J. Yang, S. Li, X. Xu, Catal Commun. 83, 35 (2016)

    Article  Google Scholar 

  57. K.V. Yatish, H.S. Lalithamba, R. Suresh, S.B. Arun, P.V. Kumar, Proc. Saf. Environ. Prote. 102, 667 (2016)

    Article  Google Scholar 

  58. R. Madhuvilakku, S. Piraman, Bioresour. Technol. 150, 55 (2013)

    Article  Google Scholar 

  59. M. Feyzi, Z. Shahbazi, J. Taiwan Inst. Chem. Eng. 71, 145 (2017)

    Article  Google Scholar 

  60. M. Feyzi, L. Norouzi, Renew. Energy. 94, 579 (2016)

    Article  Google Scholar 

  61. D. Salinas, C. Sepúlveda, N. Escalona, J.L.G. Fierro, G. Pecchi, J. Energy Chem. 27, 565 (2018)

    Article  Google Scholar 

  62. T.A. Degfie, T.T. Mamo, Y.S. Mekonnen, Sci. Rep. 9, 18982 (2019)

    Article  ADS  Google Scholar 

  63. G. Nagaraju, S.A. Prashanth, M. Shastri, K.V. Yathish, C. Anupama, D. Rangappa, Mat. Res. Bul. 94, 54 (2017)

    Article  Google Scholar 

  64. M. Raghavendra, K.V. Yatish, H.S. Lalithamba, Eur. Phys. J. Plus 132, 1 (2017)

    Article  Google Scholar 

  65. G. Baskar, M. Soumiya, Renew. energy. 98, 101 (2016)

    Article  Google Scholar 

  66. K.V. Yatish, R.M. Prakash, C. Ningaraju, M. Sakar, R.G. Balakrishna, H.S. Lalithamba, Terminalia Energy 215, 119165 (2020)

    Article  Google Scholar 

  67. G. Baskar, A. Gurugulladevi, T. Nishanthini, R. Aiswarya, K. Tamilarasan, Renew. energy. 103, 641 (2017)

    Article  Google Scholar 

  68. K. Subashini, S. Prakash, V. Sujatha, Mater. Res. Express. 7, 115308 (2020)

    Article  ADS  Google Scholar 

  69. M. Balouiri, M. Sadiki, S.K. Ibnsouda, J. Pharm. Anal. 6, 71 (2016)

    Article  Google Scholar 

  70. Q. Xiu, L. Bi, Xu. Haorong, T. Li, Z. Zhou, Z. Li, J. Wang, Y. Duan, M. Zhou, Toxins 13, 348 (2021)

    Article  Google Scholar 

  71. X. Wang, X. Liu, C. Zhao, Y. Ding, P. Xu, Bioresour. Technol. 102, 6352 (2011)

    Article  Google Scholar 

  72. L.C. Meher, V. Sagar, S.N. Naik, Renew. Sustain. Energy Rev. 10, 248 (2006)

    Article  Google Scholar 

  73. N. Pasupulety, K. Gunda, Y. Liu, L. Rempel, T. Flore, Appl. Catal. A 452, 189 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Principal, CEO and Director of Siddaganga Institute of Technology, Tumakuru, Karnataka, for the research facilities. One of the authors (HSL) is thankful to the Vision Group of Science and Technology, Department of Information Technology, Biotechnology and Science & Technology, Govt. of Karnataka, for providing funds under CISEE programme (VGST-GRD No. 472) to carry out the present research work by means of a sponsored project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Lalithamba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghavendra, M., Yatish, K.V., Lalithamba, H.S. et al. Effective utilization of green synthesized CuO nanoparticles for the preparation of keto-1,2,3-triazole analogues of protected amino acids/dipeptide acids and recyclable catalyst for the optimization and kinetic study of biodiesel production. Eur. Phys. J. Plus 136, 1156 (2021). https://doi.org/10.1140/epjp/s13360-021-02137-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02137-w

Navigation