Skip to main content
Log in

Postbuckling analysis of meta-nanocomposite beams by considering the CNTs’ agglomeration

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Enhancement of the structural elements’ stiffness as well as reducing their weight can be made possible by arranging nanocomposites in an auxetic form. Motivated by this reality, this work undergoes with the postbuckling characteristics of thin beams made from auxetic carbon nanotube-reinforced nanocomposites for the first time. A bi-stage micromechanical homogenization technique is implemented to attain the effective modulus of such meta-nanocomposites. In this method, the effects of CNT agglomerates on the modulus estimation will be captured. Next, the von Kármán strain–displacement relations will be hired as well as Euler–Bernoulli beam theory to find the nonlinear strain of the continuous system. Using the principle of virtual work, the nonlinear governing equation of the problem will be gathered. Then, Galerkin’s analytical method will be employed to find the nonlinear buckling load of the auxetic nanocomposite beams with simply supported and clamped ends. After proving the validity of the presented modeling, illustrative case studies are provided for reference. The highlights of this article indicate on the fact that the meta-nanocomposite beam will be strengthened against buckling-mode failure if small auxeticity angles are selected. Also, it is demonstrated that the structure fails under smaller buckling loads if a wide auxetic lattice is employed. Furthermore, it is shown that how can the buckling resistance of the auxetic nanocomposite beam be affected by the agglomeration phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Lakes, Foam structures with a negative Poisson’s ratio. Science 235(4792), 1038–1040 (1987). https://doi.org/10.1126/science.235.4792.1038

    Article  ADS  Google Scholar 

  2. L. Cabras, M. Brun, Auxetic two-dimensional lattices with Poisson’s ratio arbitrarily close to -1. Proc. R. Soc. Math. Phys. Eng. Sci. 470(2172), 20140538 (2014). https://doi.org/10.1098/rspa.2014.0538

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. L. Cabras, M. Brun, A class of auxetic three-dimensional lattices. J. Mech. Phys. Solids 91, 56–72 (2016). https://doi.org/10.1016/j.jmps.2016.02.010

    Article  ADS  MathSciNet  Google Scholar 

  4. G. Carta, M. Brun, A. Baldi, Design of a porous material with isotropic negative Poisson’s ratio. Mech. Mater. 97, 67–75 (2016). https://doi.org/10.1016/j.mechmat.2016.02.012

    Article  Google Scholar 

  5. R.H. Baughman, Auxetic materials: avoiding the shrink. Nature 425(6959), 667–667 (2003). https://doi.org/10.1038/425667a

    Article  ADS  Google Scholar 

  6. F. Scarpa, F.C. Smith, Passive and MR Fluid-coated Auxetic PU foam: mechanical, acoustic, and electromagnetic properties. J. Intell. Mater. Syst. Struct. 15(12), 973–979 (2004). https://doi.org/10.1177/1045389X04046610

    Article  Google Scholar 

  7. W. Yang, Z.-M. Li, W. Shi, B.-H. Xie, M.-B. Yang, Review on auxetic materials. J. Mater. Sci. 39(10), 3269–3279 (2004). https://doi.org/10.1023/B:JMSC.0000026928.93231.e0

    Article  ADS  Google Scholar 

  8. H. Wan, H. Ohtaki, S. Kotosaka, G. Hu, A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model. Eur. J. Mech. A. Solids 23(1), 95–106 (2004). https://doi.org/10.1016/j.euromechsol.2003.10.006

    Article  MATH  Google Scholar 

  9. S. Donescu, V. Chiroiu, L. Munteanu, On the Young’s modulus of a auxetic composite structure. Mech. Res. Commun. 36(3), 294–301 (2009). https://doi.org/10.1016/j.mechrescom.2008.10.006

    Article  MATH  Google Scholar 

  10. M. Assidi, J.-F. Ganghoffer, Composites with auxetic inclusions showing both an auxetic behavior and enhancement of their mechanical properties. Compos. Struct. 94(8), 2373–2382 (2012). https://doi.org/10.1016/j.compstruct.2012.02.026

    Article  Google Scholar 

  11. K. Bertoldi, P.M. Reis, S. Willshaw, T. Mullin, Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22(3), 361–366 (2010). https://doi.org/10.1002/adma.200901956

    Article  Google Scholar 

  12. J.N. Grima, R. Cauchi, R. Gatt, D. Attard, Honeycomb composites with auxetic out-of-plane characteristics. Compos. Struct. 106, 150–159 (2013). https://doi.org/10.1016/j.compstruct.2013.06.009

    Article  Google Scholar 

  13. D.M. Kochmann, G.N. Venturini, Homogenized mechanical properties of auxetic composite materials in finite-strain elasticity. Smart Mater. Struct. 22(8), 084004 (2013). https://doi.org/10.1088/0964-1726/22/8/084004

    Article  ADS  Google Scholar 

  14. Y. Hou, R. Neville, F. Scarpa, C. Remillat, B. Gu, M. Ruzzene, Graded conventional-auxetic Kirigami sandwich structures: flatwise compression and edgewise loading. Compos. B Eng. 59, 33–42 (2014). https://doi.org/10.1016/j.compositesb.2013.10.084

    Article  Google Scholar 

  15. G. Imbalzano, P. Tran, T.D. Ngo, P.V.S. Lee, A numerical study of auxetic composite panels under blast loadings. Compos. Struct. 135, 339–352 (2016). https://doi.org/10.1016/j.compstruct.2015.09.038

    Article  Google Scholar 

  16. L. Jiang, B. Gu, H. Hu, Auxetic composite made with multilayer orthogonal structural reinforcement. Compos. Struct. 135, 23–29 (2016). https://doi.org/10.1016/j.compstruct.2015.08.110

    Article  Google Scholar 

  17. M.-H. Fu, Y. Chen, L.-L. Hu, A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Compos. Struct. 160, 574–585 (2017). https://doi.org/10.1016/j.compstruct.2016.10.090

    Article  Google Scholar 

  18. L. Jiang, H. Hu, Low-velocity impact response of multilayer orthogonal structural composite with auxetic effect. Compos. Struct. 169, 62–68 (2017). https://doi.org/10.1016/j.compstruct.2016.10.018

    Article  Google Scholar 

  19. D.D. Nguyen, C.H. Pham, Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson’s ratio in auxetic honeycombs. J. Sandwich Struct. Mater. 20(6), 692–717 (2018). https://doi.org/10.1177/1099636216674729

    Article  Google Scholar 

  20. M.H. Hajmohammad, A.H. Nouri, M. Sharif Zarei, R. Kolahchi, A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment. Eng. Comput. 35(4), 1141–1157 (2019). https://doi.org/10.1007/s00366-018-0655-x

    Article  Google Scholar 

  21. X. Zhu, J. Zhang, W. Zhang, J. Chen, Vibration frequencies and energies of an auxetic honeycomb sandwich plate. Mech. Adv. Mater. Struct. 26(23), 1951–1957 (2019). https://doi.org/10.1080/15376494.2018.1455933

    Article  Google Scholar 

  22. C. Li, H.-S. Shen, H. Wang, Z. Yu, Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core. Int. J. Mech. Sci. 174, 105472 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105472

    Article  Google Scholar 

  23. X. Wu, Y. Su, J. Shi, In-plane impact resistance enhancement with a graded cell-wall angle design for auxetic metamaterials. Compos. Struct. 247, 112451 (2020). https://doi.org/10.1016/j.compstruct.2020.112451

    Article  Google Scholar 

  24. P.H. Cong, N.D. Duc, Nonlinear dynamic analysis of porous eccentrically stiffened double curved shallow auxetic shells in thermal environments. Thin-Walled Struct. 163, 107748 (2021). https://doi.org/10.1016/j.tws.2021.107748

    Article  Google Scholar 

  25. F. Ebrahimi, A. Dabbagh, Mechanics of Nanocomposites: Homogenization and Analysis (CRC Press, Boca Raton, 2020)

    Book  Google Scholar 

  26. K.V. Zakharchenko, M.I. Katsnelson, A. Fasolino, Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett. 102(4), 046808 (2009). https://doi.org/10.1103/PhysRevLett.102.046808

    Article  ADS  Google Scholar 

  27. L. Colombo, S. Giordano, Nonlinear elasticity in nanostructured materials. Rep. Prog. Phys. 74(11), 116501 (2011). https://doi.org/10.1088/0034-4885/74/11/116501

    Article  ADS  MathSciNet  Google Scholar 

  28. C. Feng, S. Kitipornchai, J. Yang, Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos. B Eng. 110, 132–140 (2017). https://doi.org/10.1016/j.compositesb.2016.11.024

    Article  Google Scholar 

  29. J. Yang, H. Wu, S. Kitipornchai, Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017). https://doi.org/10.1016/j.compstruct.2016.11.048

    Article  Google Scholar 

  30. F. Ebrahimi, M. Nouraei, A. Dabbagh, T. Rabczuk, Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates. Adv. Nano Res. 7(5), 293–310 (2019). https://doi.org/10.12989/anr.2019.7.5.293

    Article  Google Scholar 

  31. F. Ebrahimi, A. Dabbagh, Ö. Civalek, Vibration analysis of magnetically affected graphene oxide-reinforced nanocomposite beams. J. Vib. Control 25(23–24), 2837–2849 (2019). https://doi.org/10.1177/1077546319861002

    Article  MathSciNet  Google Scholar 

  32. A. Dabbagh, A. Rastgoo, F. Ebrahimi, Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory. Thin-Walled Struct. 140, 304–317 (2019). https://doi.org/10.1016/j.tws.2019.03.031

    Article  Google Scholar 

  33. D. Liu, Z. Li, S. Kitipornchai, J. Yang, Three-dimensional free vibration and bending analyses of functionally graded graphene nanoplatelets-reinforced nanocomposite annular plates. Compos. Struct. 229, 111453 (2019). https://doi.org/10.1016/j.compstruct.2019.111453

    Article  Google Scholar 

  34. M.R. Barati, A.M. Zenkour, Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection. Mech. Adv. Mater. Struct. 26(6), 503–511 (2019). https://doi.org/10.1080/15376494.2017.1400622

    Article  Google Scholar 

  35. O. Polit, C. Anant, B. Anirudh, M. Ganapathi, Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect. Compos. B Eng. 166, 310–327 (2019). https://doi.org/10.1016/j.compositesb.2018.11.074

    Article  Google Scholar 

  36. F. Ebrahimi, M. Nouraei, A. Dabbagh, Modeling vibration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment. Mech. Based Des. Struct. Mach. 48(2), 217–240 (2020). https://doi.org/10.1080/15397734.2019.1660185

    Article  Google Scholar 

  37. F. Ebrahimi, M. Nouraei, A. Dabbagh, Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates. Eng. Comput. 36(3), 879–895 (2020). https://doi.org/10.1007/s00366-019-00737-w

    Article  Google Scholar 

  38. M.A. Amani, F. Ebrahimi, A. Dabbagh, A. Rastgoo, M.M. Nasiri, A machine learning-based model for the estimation of the temperature-dependent moduli of graphene oxide reinforced nanocomposites and its application in a thermally affected buckling analysis. Eng. Comput. 37(3), 2245–2255 (2021). https://doi.org/10.1007/s00366-020-00945-9

    Article  Google Scholar 

  39. A. Dabbagh, A. Rastgoo, F. Ebrahimi, Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory. Eng. Comput. 37(3), 2225–2244 (2021). https://doi.org/10.1007/s00366-020-00939-7

    Article  Google Scholar 

  40. A. Dabbagh, A. Rastgoo, F. Ebrahimi, Post-buckling analysis of imperfect multi-scale hybrid nanocomposite beams rested on a nonlinear stiff substrate. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01064-1

    Article  Google Scholar 

  41. B. Anirudh, T. Ben Zineb, O. Polit, M. Ganapathi, G. Prateek, Nonlinear bending of porous curved beams reinforced by functionally graded nanocomposite graphene platelets applying an efficient shear flexible finite element approach. Int. J. Non-Linear Mech. 119, 103346 (2020). https://doi.org/10.1016/j.ijnonlinmec.2019.103346

    Article  ADS  Google Scholar 

  42. R. Moradi-Dastjerdi, K. Behdinan, Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous layers. Int. J. Mech. Sci. 167, 105283 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105283

    Article  Google Scholar 

  43. R. Ansari, R. Hassani, R. Gholami, H. Rouhi, Nonlinear bending analysis of arbitrary-shaped porous nanocomposite plates using a novel numerical approach. Int. J. Non-Linear Mech. 126, 103556 (2020). https://doi.org/10.1016/j.ijnonlinmec.2020.103556

    Article  ADS  Google Scholar 

  44. A. Dabbagh, A. Rastgoo, F. Ebrahimi, Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory. Mech. Based Des. Struct. Mach. 49(3), 403–429 (2021). https://doi.org/10.1080/15397734.2019.1692666

    Article  Google Scholar 

  45. F. Ebrahimi, A. Dabbagh, A. Rastgoo, T. Rabczuk, Agglomeration effects on static stability analysis of multi-scale hybrid nanocomposite plates. Comput. Mater. Continua 63(1), 41–64 (2020). https://doi.org/10.32604/cmc.2020.07947

    Article  Google Scholar 

  46. F. Ebrahimi, A. Dabbagh, An analytical solution for static stability of multi-scale hybrid nanocomposite plates. Eng. Comput. 37(1), 545–559 (2021). https://doi.org/10.1007/s00366-019-00840-y

    Article  Google Scholar 

  47. F.A. Fazzolari, Elastic buckling and vibration analysis of FG polymer composite plates embedding graphene nanoplatelet reinforcements in thermal environment. Mech. Adv. Mater. Struct. 28(4), 391–404 (2021). https://doi.org/10.1080/15376494.2019.1567886

    Article  Google Scholar 

  48. F. Ebrahimi, A. Dabbagh, A. Rastgoo, Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles. Mech. Based Des. Struct. Mach. 49(4), 487–510 (2021). https://doi.org/10.1080/15397734.2019.1692665

    Article  Google Scholar 

  49. F. Ebrahimi, R. Nopour, A. Dabbagh, Effect of viscoelastic properties of polymer and wavy shape of the CNTs on the vibrational behaviors of CNT/glass fiber/polymer plates. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01387-7

    Article  Google Scholar 

  50. X.-h Huang, J. Yang, X.-e Wang, I. Azim, Combined analytical and numerical approach for auxetic FG-CNTRC plate subjected to a sudden load. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-01106-8

    Article  Google Scholar 

  51. H.-S. Shen, Y. Xiang, Effect of negative poisson’s ratio on the axially compressed postbuckling behavior of FG-GRMMC laminated cylindrical panels on elastic foundations. Thin-Walled Struct. 157, 107090 (2020). https://doi.org/10.1016/j.tws.2020.107090

    Article  Google Scholar 

  52. H.-S. Shen, Y. Xiang, J.N. Reddy, Effect of negative Poisson’s ratio on the post-buckling behavior of FG-GRMMC laminated plates in thermal environments. Compos. Struct. 253, 112731 (2020). https://doi.org/10.1016/j.compstruct.2020.112731

    Article  Google Scholar 

  53. Y. Fan, Y. Wang, The effect of negative Poisson’s ratio on the low-velocity impact response of an auxetic nanocomposite laminate beam. Int. J. Mech. Mater. Des. 17(1), 153–169 (2021). https://doi.org/10.1007/s10999-020-09521-x

    Article  Google Scholar 

  54. H.-S. Shen, C. Li, X.-H. Huang, Assessment of negative Poisson’s ratio effect on the postbuckling of pressure-loaded FG-CNTRC laminated cylindrical shells. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1880934

    Article  Google Scholar 

  55. H.-S. Shen, Y. Xiang, Effect of negative Poisson’s ratio on the postbuckling behavior of axially compressed FG-GRMMC laminated cylindrical shells surrounded by an elastic medium. Eur. J. Mech. A. Solids 88, 104231 (2021). https://doi.org/10.1016/j.euromechsol.2021.104231

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. H.-S. Shen, Y. Xiang, J.N. Reddy, Assessment of the effect of negative Poisson’s ratio on the thermal postbuckling of temperature dependent FG-GRMMC laminated cylindrical shells. Comput. Methods Appl. Mech. Eng. 376, 113664 (2021). https://doi.org/10.1016/j.cma.2020.113664

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. P.P. Castañeda, J.R. Willis, The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Solids 43(12), 1919–1951 (1995). https://doi.org/10.1016/0022-5096(95)00058-Q

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. G.K. Hu, G.J. Weng, The connections between the double-inclusion model and the Ponte Castaneda-Willis, Mori-Tanaka, and Kuster-Toksoz models. Mech. Mater. 32(8), 495–503 (2000). https://doi.org/10.1016/S0167-6636(00)00015-6

    Article  Google Scholar 

  59. G.K. Hu, G.J. Weng, Some reflections on the Mori-Tanaka and Ponte Castañeda-Willis methods with randomly oriented ellipsoidal inclusions. Acta Mech. 140(1), 31–40 (2000). https://doi.org/10.1007/BF01175978

    Article  MATH  Google Scholar 

  60. S. Giordano, Nonlinear effective properties of heterogeneous materials with ellipsoidal microstructure. Mech. Mater. 105, 16–28 (2017). https://doi.org/10.1016/j.mechmat.2016.11.003

    Article  Google Scholar 

  61. K. Gao, Q. Huang, S. Kitipornchai, J. Yang, Nonlinear dynamic buckling of functionally graded porous beams. Mech. Adv. Mater. Struct. 28(4), 418–429 (2021). https://doi.org/10.1080/15376494.2019.1567888

    Article  Google Scholar 

  62. F. Ebrahimi, A. Dabbagh, T. Rabczuk, On wave dispersion characteristics of magnetostrictive sandwich nanoplates in thermal environments. Eur. J. Mech. A. Solids 85, 104130 (2021). https://doi.org/10.1016/j.euromechsol.2020.104130

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. M. Karimiasl, F. Ebrahimi, V. Mahesh, Hygrothermal postbuckling analysis of smart multiscale piezoelectric composite shells. Eur. Phys. J. Plus 135(2), 242 (2020). https://doi.org/10.1140/epjp/s13360-020-00137-w

    Article  Google Scholar 

  64. J. Torabi, R. Ansari, E. Hasrati, Mechanical buckling analyses of sandwich annular plates with functionally graded carbon nanotube-reinforced composite face sheets resting on elastic foundation based on the higher-order shear deformation plate theory. J. Sandwich Struct. Mater. 22(6), 1812–1837 (2020). https://doi.org/10.1177/1099636218789617

    Article  Google Scholar 

  65. R. Salmani, R. Gholami, R. Ansari, M. Fakhraie, Analytical investigation on the nonlinear postbuckling of functionally graded porous cylindrical shells reinforced with graphene nanoplatelets. Eur. Phys. J. Pluss 136(1), 53 (2021). https://doi.org/10.1140/epjp/s13360-020-01009-z

    Article  Google Scholar 

  66. H.-S. Shen, J.N. Reddy, Y. Yu, Postbuckling of doubly curved FG-GRC laminated panels subjected to lateral pressure in thermal environments. Mech. Adv. Mater. Struct. 28(3), 260–270 (2021). https://doi.org/10.1080/15376494.2018.1556827

    Article  Google Scholar 

  67. J. Torabi, J. Niiranen, R. Ansari, Nonlinear finite element analysis within strain gradient elasticity: Reissner-Mindlin plate theory versus three-dimensional theory. Eur. J. Mech. A. Solids 87, 104221 (2021). https://doi.org/10.1016/j.euromechsol.2021.104221

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. S. Sahmani, B. Safaei, F. Aldakheel, Surface elastic-based nonlinear bending analysis of functionally graded nanoplates with variable thickness. Eur. Phys. J. Plus 136(6), 676 (2021). https://doi.org/10.1140/epjp/s13360-021-01667-7

    Article  Google Scholar 

  69. C. Zhang, Q. Wang, Free vibration analysis of elastically restrained functionally graded curved beams based on the Mori-Tanaka scheme. Mech. Adv. Mater. Struct. 26(21), 1821–1831 (2019). https://doi.org/10.1080/15376494.2018.1452318

    Article  Google Scholar 

  70. F. Ebrahimi, S.H.S. Hosseini, Resonance analysis on nonlinear vibration of piezoelectric/FG porous nanocomposite subjected to moving load. Eur. Phys. J. Plus 135(2), 215 (2020). https://doi.org/10.1140/epjp/s13360-019-00011-4

    Article  Google Scholar 

  71. E. Yarali, M.A. Farajzadeh, R. Noroozi, A. Dabbagh, M.J. Khoshgoftar, M.J. Mirzaali, Magnetorheological elastomer composites: modeling and dynamic finite element analysis. Compos. Struct. 254, 112881 (2020). https://doi.org/10.1016/j.compstruct.2020.112881

    Article  Google Scholar 

  72. M.S.H. Al-Furjan, M. Habibi, F. Ebrahimi, G. Chen, M. Safarpour, H. Safarpour, A coupled thermomechanics approach for frequency information of electrically composite microshell using heat-transfer continuum problem. Eur. Phys. J. Plus 135(10), 837 (2020). https://doi.org/10.1140/epjp/s13360-020-00764-3

    Article  Google Scholar 

  73. V. Borjalilou, M. Asghari, Size-dependent analysis of thermoelastic damping in electrically actuated microbeams. Mech. Adv. Mater. Struct. 28(9), 952–962 (2021). https://doi.org/10.1080/15376494.2019.1614700

    Article  Google Scholar 

  74. M. Cinefra, A.G. de Miguel, M. Filippi, C. Houriet, A. Pagani, E. Carrera, Homogenization and free-vibration analysis of elastic metamaterial plates by Carrera unified formulation finite elements. Mech. Adv. Mater. Struct. 28(5), 476–485 (2021). https://doi.org/10.1080/15376494.2019.1578005

    Article  Google Scholar 

  75. V. Mahesh, Nonlinear pyrocoupled deflection of viscoelastic sandwich shell with CNT reinforced magneto-electro-elastic facing subjected to electromagnetic loads in thermal environment. Eur. Phys. J. Plus 136(8), 796 (2021). https://doi.org/10.1140/epjp/s13360-021-01751-y

    Article  Google Scholar 

  76. L. Wang, H. Hu, Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 71(19), 195412 (2005). https://doi.org/10.1103/PhysRevB.71.195412

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Dabbagh or Farzad Ebrahimi.

Appendix

Appendix

The stiff variables implemented in Eqs. (5) and (6) can be defined as below [32]:

$$ \alpha_{r} = \frac{{3\left( {K_{m} + G_{m} } \right) + k_{r} + l_{r} }}{{3\left( {G_{m} + k_{r} } \right)}} $$
(34)
$$ \beta_{r} = \frac{1}{5}\left( {\frac{{4G_{m} + 2k_{r} + l_{r} }}{{3\left( {G_{m} + k_{r} } \right)}} + \frac{{4G_{m} }}{{G_{m} + p_{r} }} + \frac{{2\left( {G_{m} \left( {3K_{m} + G_{m} } \right) + G_{m} \left( {3K_{m} + 7G_{m} } \right)} \right)}}{{G_{m} \left( {3K_{m} + G_{m} } \right) + m_{r} \left( {3K_{m} + 7G_{m} } \right)}}} \right) $$
(35)
$$ \delta_{r} = \frac{1}{3}\left( {n_{r} + 2l_{r} + \frac{{\left( {2k_{r} + l_{r} } \right)\left( {3K_{m} + G_{m} - l_{r} } \right)}}{{G_{m} + k_{r} }}} \right) $$
(36)
$$ \eta_{r} = \frac{1}{5}\left( {\frac{2}{3}\left( {n_{r} - l_{r} } \right) + \frac{{8G_{m} p_{r} }}{{G_{m} + p_{r} }} + \frac{{\left( {2k_{r} - l_{r} } \right)\left( {2G_{m} + l_{r} } \right)}}{{3\left( {G_{m} + k_{r} } \right)}} + \frac{{8m_{r} G_{m} \left( {3K_{m} + 4G_{m} } \right)}}{{3K_{m} \left( {m_{r} + G_{m} } \right) + G_{m} \left( {7m_{r} + G_{m} } \right)}}} \right) $$
(37)

In the above relations, subscripts “m” and “r” denote matrix and reinforcing nanofillers, respectively. Also, it must be mentioned that \(k_{r}\), \(l_{r}\), \(m_{r}\), \(n_{r}\), and \(p_{r}\) are the Hill’s elastic constants of the CNTs used in the modeling. These constants can be found by referring to Table 1 of present paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabbagh, A., Ebrahimi, F. Postbuckling analysis of meta-nanocomposite beams by considering the CNTs’ agglomeration. Eur. Phys. J. Plus 136, 1168 (2021). https://doi.org/10.1140/epjp/s13360-021-02160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02160-x

Navigation