Skip to main content
Log in

Unsteady MHD flow of a Williamson nanofluid on a permeable stretching surface with radiation and chemical reaction effects

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In the present work, we emphasize the impacts of an inclined magnetic field, viscous dissipation and radiation on the unsteady flow of a Williamson nanofluid over a vertical stretching porous surface with the presence of non-uniform heat source/sink and chemical reaction. In this study, we considered different kinds of nanoparticles such as silver, copper, aluminium oxide (\(\hbox {Al}_{2}\hbox {O}_{3})\), titanium oxide (\(\hbox {TiO}_{2})\), and magnesium oxide (MgO). The basic equations of this investigation are transmuted into a system of nonlinear and coupled ODEs using suitable similarity variables and elucidated numerically by R.-K. Fehlberg-based shooting technique. Influences of the pertinent parameters on the velocity, the temperature and the concentration distributions are deliberated with the assistance of graphs and tables. This study depicts that \(\hbox {Al}_{2}\hbox {O}_{3}\) nanofluid has greater velocity since it has less dense nanoparticles compared to other nanoparticles. However, Cu-nanofluid has greater heat transfer due to greater thermal conductivity. Further, we identified that the thermal boundary layer thickness can be increased with the help of the viscous dissipation parameter. The inclination angle of the magnetic field strengthens the magnetic field on the fluid flow

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Abbreviations

uv :

Velocities in x- and y-direction (m/s)

g :

Acceleration due to gravity (\(\hbox {ms}^{{-2}})\)

\(\phi \) :

Nanoparticle solid volume fraction (nm)

\(\rho _\mathrm{f},\rho _\mathrm{s} \) :

Densities of the base fluid and solid nanoparticles \((\hbox {kg}/\hbox {m}^{3})\)

\(\nu _\mathrm{f}\) :

Kinematic viscosity of the fluid (\(\hbox {m}^{2}\)/s)

\(\mu _\mathrm{f}\) :

Dynamic viscosity of the base fluid (kg/ms)

\(\rho _\mathrm{nf}\) :

Density of the nanofluid (kg/ \(\hbox {m}^{3}\)K)

\(\mu _\mathrm{nf}\) :

Effective dynamic viscosity of nanofluid (kg/ms)

\(\sigma _\mathrm{nf}\) :

Electrical conductivity of the nanofluid (S/m)

\(\alpha _\mathrm{nf}\) :

Thermal diffusivity of the nanofluid

\(\beta _\mathrm{nf}\) :

Thermal expansion of the nanofluid

\(k_\mathrm{nf}\) :

Thermal conductivity of the nanofluid (W/m K)

\(\hbox {C}_\mathrm{p}\) :

Specific heat capacity (J/kg K)

\(\sigma _\mathrm{f},\sigma _\mathrm{s}\) :

Electrical conductivities of the base fluid and solid fraction

\((\rho \beta )_\mathrm{f} ( \rho \beta )_\mathrm{s}\) :

Thermal expansion coefficient of the base fluid and solid fraction

\({{(\rho C}_\mathrm{p})}_\mathrm{f}, {{(\rho C}_\mathrm{p})}_\mathrm{s}\) :

Heat capacities of the base fluid and solid fraction

\({k}_\mathrm{{f}}\), \({k}_{\mathrm{s}}\) :

Thermal conductivities of the base fluid and Solid fraction

k :

Thermal conductivity

\(\eta \) :

Similarity variable

f :

Dimensionless velocity

\(\theta \) :

Dimensionless temperature

\({\Phi }\) :

Dimensionless concentration

\(A=\frac{\alpha }{a}\) :

Unsteadiness parameter

\(\mathrm{We}=\sqrt{2} \Gamma \sqrt{\frac{a^{3}}{\nu _\mathrm{f}{(1-\alpha t)}^{3}}}\) :

Fluid parameter

H :

Magnetic parameter

\(\lambda \) :

Buoyancy or convection parameter

\(\gamma \) :

Angle of inclination

K :

Permeability parameter

\(A*\) :

Space-dependent heat source/sink

\(B*\) :

Temperature-dependent heat source/sink

R :

Radiation parameter

\(\mathrm{Ec}=\frac{U_\mathrm{w}^{2}}{(T_\mathrm{w}-T_{\infty })}\) :

Eckert number (viscous dissipation parameter)

\(\mathrm{Pr}=\frac{\left( \rho C_\mathrm{p} \right) \nu _\mathrm{f}}{k_\mathrm{f}}\) :

Prandtl number

\(\mathrm{Sc}=\frac{\nu _\mathrm{f}}{D_\mathrm{B}}\) :

Schmidt number

\(\mathrm{Re}_{x}=\frac{u_\mathrm{w}x}{\nu _\mathrm{f}}\) :

Local Reynolds number

\(K_\mathrm{r}\) :

Chemical reaction parameter

\(C_\mathrm{fx}\) :

Skin friction coefficient

\(\mathrm{Nu}_{x}\) :

Nusselt number

\(\mathrm{Sh}_{x}\) :

Sherwood number

References

  1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows. Am. Soc. Mech. Eng. 66, 99–105 (1995)

    Google Scholar 

  2. J.A. Eastman, U.S. Choi, S. Li, S.J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids. Mater. Res. Soc. Sympos. Proce. 457, 3–11 (1997)

    Google Scholar 

  3. X. Hang, I. Pop, X.-C. You, Flow and heat transfer in a nanoliquid film over an unsteady stretching surface. Int. J. Heat Mass Transf. 60, 646–652 (2013)

    Google Scholar 

  4. K. Vajravelu, K.V. Prasad, Chiu-On Ng, Unsteady convective boundary layer flow of a viscous fluid at a vertical surface with variable fluid properties. Nonlinear Anal. Real World Appl. 14(1), 455–464 (2013)

    MathSciNet  Google Scholar 

  5. Y. Lin, L. Zheng, G. Chen, Unsteady flow and heat transfer of pseudo-plastic nanoliquid in a finite thin film on a stretching surface with variable thermal conductivity and viscous dissipation. Powder Technol. 274, 324–332 (2015)

    Google Scholar 

  6. N. Sandeep, B. Rushi Kumar, M.S. Jagadeesh Kumar, A comparative study of convective heat and mass transfer in non-Newtonian nanofluid flow past a permeable stretching sheet. J. Mol. Liq. 212, 585–591 (2015)

    Google Scholar 

  7. P. Sudarsana Reddy, A.J. Chamkha, A. Al-Mudhaf, MHD heat and mass transfer flow of nanofluid over an inclined vertical porous plate with radiation and heat generation/absorption. Adv. Powder Technol. 28, 1008–1017 (2017)

    Google Scholar 

  8. S. Nadeem, R.U. Haq, Z.H. Khan, Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticle. J. Taiwan Inst. Chem. Eng. 45, 121–126 (2014)

    Google Scholar 

  9. M. Sheikholeslami, D.D. Ganji, M.M. Rashidhi, Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model. J. Magnet. Magnet. Mater. 416, 164–173 (2016)

    ADS  Google Scholar 

  10. P.K. Kameswaran, M. Narayana, P. Sibanda, P.V.S.N. Murthy, Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects. Int. J. Heat Mass Transf. 55, 7587–7595 (2012)

    Google Scholar 

  11. S. Nadeem, S.T. Hussain, C. Lee, Flow of Williamson fluid over a stretching sheet. Braz. J. Chem. Eng. 30(3), 619–625 (2013)

    Google Scholar 

  12. S. Nadeem, S.T. Hussain, Flow and heat transfer analysis of Williamson nanofluid. Appl. Nanosci. 4, 1005–1012 (2014)

    ADS  Google Scholar 

  13. S. Nadeem, S.T. Hussain, Heat transfer analysis of Williamson fluid over exponentially stretching surface. Appl. Math. Mech. 35(4), 489–502 (2014)

    MathSciNet  MATH  Google Scholar 

  14. M. Ramzan, M. Bilal, J.D. Chung, Radiative Williamson nanofluid over a convectively heated Riga plate with chemical reaction-A numerical approach. Chin. J. Phys. 55(4), 1663–1673 (2017)

    Google Scholar 

  15. T. Hayat, A. Shafiq, A. Alsaedi, Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and ohmic dissipation. Alex. Eng. J. 55, 2229–2240 (2016)

    Google Scholar 

  16. Z. Shah, E. Bonyah, S. Islam, W. Khan, M. Ishaq, Radiative MHD thin film flow of Williamson fluid over an unsteady permeable stretching sheet. Heliyon. 4(10), e00825 (2018)

    Google Scholar 

  17. A. Zaib, R.U. Haq, A.J. Chamkha, M.M. Rashidhi, Impact of non-linear radiative nanoparticle on the unsteady flow of Williamson fluid toward a permeable convectively heated shrinking sheet. World J. Eng. 15(6), 731–742 (2018)

    Google Scholar 

  18. M. Khan, A. Khan, Influence of non-linear thermal radiation on the 2D unsteady flow of a Williamson fluid with heat source/sink. Results Phys. 7, 3968–3975 (2017)

    ADS  Google Scholar 

  19. A. Hamid, M. Khan, A.S. Alshomrani, Non-linear radiation and chemical reaction effects on slip flow of Williamson nanofluid due to static/moving wedge. Appl. Nanosci. (2019)

  20. J. Raza, F. Mebarek-Oudina, B. Mahanthesh, Magnetohydrodynamic flow of nano Williamson fluid generated by stretching plate with multiple slips. Multidiscip. Model. Mater. Struct. 15(5), 871–894 (2019)

    Google Scholar 

  21. T. Hayat, S. Nawaz, A. Alsaedi, M. Rafiq, Influence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channel. Results Phys. 7, 982–990 (2017)

    ADS  Google Scholar 

  22. M. Sheikholeslami, D.D. Ganji, M. Younus Javed, R. Ellahi, Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two-phase model. J. Magnet. Magnet. Mater. 374, 36–43 (2015)

    ADS  Google Scholar 

  23. A. Ishak, N. Azizah Yacob, N. Bachok, Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition. Meccanica. 46, 795–811 (2011)

    MathSciNet  MATH  Google Scholar 

  24. B. Mahanthesh, B.J. Gireesha, R. Subba, R. Gorla, Heat and mass transfer effects on the mixed convective flow of chemically reacting nanofluid past a moving/stationary vertical plate. Alex. Eng. J. 55(1), 569–581 (2016)

    Google Scholar 

  25. N.S. Elgazery, Nanofluids over a permeable unsteady stretching surface with non-uniform heat source/sink in the presence of the inclined magnetic field. J. Egypt. Math. Soc. 27(1), 9 (2019)

    MathSciNet  MATH  Google Scholar 

  26. T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation. Int. J. Heat Mass Transf. 102, 723–732 (2016)

    Google Scholar 

  27. K. Vajravelu, K.V. Prasad, J. Lee, I. Changhoon Lee, R.A. Pop, V. Gorder, Convective heat transfer in the flow of viscous Ag-water and Cu-water nanofluids over a stretching surface. Int. J. Thermal Sci. 50, 843–851 (2011)

    Google Scholar 

  28. A.M. Rohini, S. Ahmad, I. Pop, Flow and heat transfer over an unsteady shrinking sheet with suction in nanofluids, Int. J. Heat Mass Transf. 55, 1888–1895 (2012)

    Google Scholar 

  29. C. Sulochana, G.P. Ashwin Kumar, Carreau model for liquid thin film flow of dissipative magnetic-nanofluids over a stretching sheet. Int. J. Hybrid Inf. Technol. 10(1), 239–254 (2017)

    Google Scholar 

  30. Ch. Achi Reddy, B. Shankar, Unsteady convective boundary layer flow of nanofluid over a stretching sheet in the presence of viscous dissipation, chemical reaction and porous medium. Mater. Today Proc. 4, 7484–7497 (2017)

    Google Scholar 

  31. T. Motsumi, O.D. Makinde, Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate. Phys. Scr. 86(4), 045003 (2012)

  32. G. Sucharitha, K. Vajravelu, P. Lakshminarayana, Effect of heat and mass transfer on the peristaltic flow of a Jeffrey nanofluid in a tapered flexible channel in the presence of the aligned magnetic field. Eur. Phys. J. Spec. Top. 228, 2713–2728 (2019)

    Google Scholar 

  33. C.S.K. Raju, N. Sandeep, C. Sulochana, V. Sugunamma, M. Jayachandra Babu, Radiation, inclined magnetic field, cross diffusion effects on flow over a stretching surface. J. Nigerian Math. Soc. 34, 169–180 (2015)

    MathSciNet  MATH  Google Scholar 

  34. M. Krishna Murthy, S. Sreenadh, P. Lakshminarayana, G. Sucharitha, B. Rushikumar, Thermophoresis and Brownian motion effects on three dimensional MHD slip flow of a Casson nanofluid over an exponentially stretching surface. J. Nano Fluids 8(6), 1267–1272 (2019)

    Google Scholar 

  35. G. Sucharitha, M.M. Rashidi, S. Sreenadh, P. Lakshminarayana, Effects of magnetic field and slip on convective peristaltic flow of a non-Newtonian fluid in an inclined non-uniform porous channel with flexible walls. J. Porous Media 21(10), 895–910 (2018)

    Google Scholar 

  36. G. Kumaran, P. Lakshminarayana, P.B.A. Reddy, N. Sandeep, Melting Heat Transfer in Magnetohydrodynamic Carreau Fluid over a Thermally Stratified Parabolic Surface. Defect Diffus. Forum 388, 246–264 (2018)

    Google Scholar 

  37. G. Sucharitha, K. Vajravelu, P. Lakshminarayana, Magnetohydrodynamic nanofluid flow in a non-uniform aligned channel with joule heating. J. Nanofluids 8(7), 1373–1384 (2019)

    Google Scholar 

  38. R. Meenakumari, P. Lakshminarayana, K. Vajravelu, Influence of induced magnetic field and slip conditions on convective Prandtl fluid flow over a stretching surface with homogeneous and heterogeneous reactions. Multidiscip. Model. Mater. Struct. (2020). https://doi.org/10.1108/MMMS-02-2020-0040

    Article  Google Scholar 

  39. R. Meenakumari, P. Lakshminarayana, Radiation and Hall effects on a 3D flow of MHD Williamson fluid over a stretchable surface. Heat Transf. (2020). https://doi.org/10.1002/htj.21833

    Article  Google Scholar 

  40. P. Lakshminarayana, K. Vajravelu, G. Sucharitha, S. Sreenadh, Peristaltic slip flow of a Bingham fluid in an inclined porous conduit with Joule heating. Appl. Math. Nonlinear Sci. 3(1), 41–54 (2018)

    MathSciNet  Google Scholar 

  41. L.J. Grubka, K.M. Bobba, Heat transfer characteristics of a continuous stretching surface with variable temperature. J. Heat Transf. 107, 248–250 (1985)

    Google Scholar 

  42. M.E. Ali, Heat transfer characteristics of a continuous stretching surface. Heat Mass Transf. 29, 227–234 (1994)

    Google Scholar 

  43. A. Ishak, R. Nazar, I. Pop, Boundary layer flow and heat transfer over an unsteady stretching vertical surface. Meccanica. 44, 369–375 (2009)

    MathSciNet  MATH  Google Scholar 

  44. A. Mahdy, Unsteady mixed convection boundary layer flow and heat transfer of nanofluids due to stretching sheet. Nucl. Eng. Des. 249, 248–255 (2012)

    Google Scholar 

  45. N. Freidoonimehr, M. Mehdi, M. Rashidi, S. Mahmud, Unsteady MHD free convective flow past a permeable stretching vertical surface in a nanofluid. Int. J. Thermal Sci. 87, 136–145 (2015)

    Google Scholar 

  46. M. Vinodkumar Reddy, P. Lakshminarayana, MHD radiative flow of a Maxwell fluid on an expanding surface with the effects of Dufour and Soret and chemical reaction. Comput. Thermal Sci. 12(4), 317–327 (2020)

    Google Scholar 

  47. K. Subbarayudu, S. Suneetha, P. Bala Anki Reddy, The assessment of time dependent flow of Williamson fluid with radiative blood flow against a wedge. Propuls. Power Res. 9(1), 87–99 (2020)

    Google Scholar 

  48. N.S. Elgazery, Flow of non-Newtonian magneto-fluid with gold and alumina nanoparticles through a non-Darcian porous medium. J. Egypt. Math. Soc. 27(39), 27–39 (2019)

    MathSciNet  MATH  Google Scholar 

  49. A. Zaman, N. Ali, N. Kousar, Nano particles (Cu, \(\text{ TiO}_{2}\), \(\text{ Al}_{2}\text{ O}_{3})\) analysis on unsteady blood flow through an artery with a combination of stenosis and aneurysm. Comput. Math. Appl. 76(9), 2179–2191 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors R.M. and P.L. provided the idea, formulation of the problem, methodology and worked on the details of the problem. The author K.V. worked on the details of the problem, several drafts of the manuscript and presented the final version of the manuscript. All authors approve the final version for publication.

Corresponding author

Correspondence to P. Lakshminarayana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meenakumari, R., Lakshminarayana, P. & Vajravelu, K. Unsteady MHD flow of a Williamson nanofluid on a permeable stretching surface with radiation and chemical reaction effects. Eur. Phys. J. Spec. Top. 230, 1355–1370 (2021). https://doi.org/10.1140/epjs/s11734-021-00039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00039-7

Navigation