Skip to main content

Advertisement

Log in

Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical Warfare Agent and explosives

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

Tunable laser photoacoustic spectroscopy is maturing rapidly in its applications to real world problems. One of the burning problems of the current turbulent times is the threat of terrorist acts against civilian population. This threat appears in two distinct forms. The first is the potential release of chemical warfare agents (CWA), such as the nerve agents, in a crowded environment. An example of this is the release of Sarin by Aum Shinrikyo sect in a crowded Tokyo subway in 1995. An example of the second terrorist threat is the ever-present possible suicide bomber in crowded environment such as airports, markets and large buildings. Minimizing the impact of both of these threats requires early detection of the presence of the CWAs and explosives. Photoacoustic spectroscopy is an exquisitely sensitive technique for the detection of trace gaseous species, a property that Pranalytica has extensively exploited in its CO2 laser based commercial instrumentation for the sub-ppb level detection of a number of industrially important gases including ammonia, ethylene, acrolein, sulfur hexafluoride, phosphine, arsine, boron trichloride and boron trifluoride. In this presentation, I will focus, however, on our recent use of broadly tunable single frequency high power room temperature quantum cascade lasers (QCL) for the detection of the CWAs and explosives. Using external grating cavity geometry, we have developed room temperature QCLs that produce continuously tunable single frequency CW power output in excess of 300 mW at wavelengths covering 5μm to 12μm. I will present data that show a CWA detection capability at ppb levels with false alarm rates below 1:108. I will also show the capability of detecting a variety of explosives at a ppb level, again with very low false alarm rates. Among the explosives, we have demonstrated the capability of detecting homemade explosives such as triacetone triperoxide and its liquid precursor, acetone which is a common household liquid. This capability, deployed at airports and other public places, will go a long way towards increasing public safety and minimizing inconveniences faced in airline travel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Graham Bell, Science (Old Series) 2, 242 (1881)

  • A. Graham Bell, Science (Old Series) 1, 130 (1880)

  • See for example, J.F. McClelland, R.W. Jones, S. Luo, L.M. Seaverson, A Practical Guide to FTIR Photoacoustic Spectroscopy, in Practical Sampling Techniques for Infrared Analysis, edited by P.B. Coleman (CRC Press, 1993), pp. 107–145

  • L.B. Kreuzer, J. Appl. Phys. 43, 2934 (1971)

    Google Scholar 

  • L.B. Kreuzer, The Physics of Signal Generation and Detection, in Optoacoustic Spectroscopy and Detection, edited by Y.-H. Pao (Academic Press, New York, 1977), pp. 1–25

  • L.B. Kreuzer, C.K.N. Patel, Science 173, 45 (1971)

    Google Scholar 

  • L.B. Kreuzer, N.D. Kenyon, C.K.N. Patel, Science 177, 347 (1972)

    Google Scholar 

  • C.K.N. Patel, E.G. Burkhardt, C.A. Lambert, Science 184, 1173 (1974)

    Google Scholar 

  • C.K.N. Patel, E.G. Burkhardt, C.A. Lambert, Science 188, 1111 (1975)

    Google Scholar 

  • H. Johnston, Science 173, 517 (1971)

  • C.K.N. Patel, Science 202, 157 (1978)

  • A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976)

    Google Scholar 

  • A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (John Wiley & Sons, Inc., 1980)

  • C.K.N. Patel, A.C. Tam, Appl. Phys. Lett. 34, 467 (1979)

    Google Scholar 

  • C.K.N. Patel, A.C. Tam, Appl. Phys. Lett. 36, 7 (1980)

    Google Scholar 

  • C.K.N. Patel, E.T. Nelson, R.J. Kerl, Nature 286, 368 (1980)

    Google Scholar 

  • C.K.N. Patel, E.T. Nelson, R.J. Kerl, Phys. Rev. Lett. 47, 1631 (1981)

    Google Scholar 

  • C.K.N. Patel, A.C. Tam, Rev. Mod. Phys. 53, 517 (1981)

    Google Scholar 

  • A. Miklos, C.-H. Lim, W.-W. Hsiang, G.-C. Liang, A.H. Kung, A. Schmohl, P. Hess, Appl. Opt. 41, 2985 (2002)

    Google Scholar 

  • M.M.J.W. van Herpen, S. Li, S.E. Bisson, F.J.M. Harren, Appl. Phys. Lett. 81, 1157 (2002)

    Google Scholar 

  • M.M.J.W. van Herpen, A.K.Y. Ngai, S.E. Bisson, J.H.P. Hackstein, E.J. Woltering, F.J.M. Harren, Appl. Phys. B: Lasers and Optics 82, 665 (2006)

    Google Scholar 

  • M.E. Webber, T. Macdonald, M.B. Pushkarsky, C.K.N. Patel, Y. Zhao, N. Marcillac, F.M. Mitloehner, Meas. Sci. Technol. 16, 1547 (2005)

    Google Scholar 

  • M.B. Pushkarsky, M.E. Weber, C.K.N. Patel, Appl. Phys. B 77, 381 (2003)

    Google Scholar 

  • J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)

    Google Scholar 

  • M.B. Filho, M.G. da Silva, M.S. Sthel, D.U. Schramm, H. Vargas, A. Miklós, P. Hess, Appl. Opt. 45, 4966 (2006)

    Google Scholar 

  • J.P. Lima, H. Vargas, A. Miklos, M. Angelmahr, P. Hess, Appl. Phys. B 85, 279 (2006)

    Google Scholar 

  • A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, C.K.N. Patel, Proc. Nat. Acad. Sci. 103, 4831 (2006)

    Google Scholar 

  • M.I. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, C.K.N. Patel, Proc. Nat. Acad. Sci. 103, 10846 (2006)

    Google Scholar 

  • M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, C.K.N. Patel, Proc. Nat. Acad. Sci. 103, 19630 (2006)

    Google Scholar 

  • Air Safety Week, November 18, 2002

  • D.G. McNeil Jr., “A Nation Challenged: The Inquiry; French Authorities Wonder: How Could It Have Happened?” The New York Times Section B, page 5, column 5 (December 24, 2001)

  • K.B. Olson, “Aum Shinrikyo: Once and Future Threat?” Emerging Infectious Diseases 5, 513–516 (1999)

  • C. Williams, A. Lengel, M.B. Sheridan, “Alarm Prompts Evacuation of Senate Office”, in The Washington Post, February 9, 2006

  • S.W. Sharpe, R.L. Sams, T.J. Johnson, P.M. Chu, G.C. Rhoderick, F.R. Guenther, SPIE Proceedings for Vibrational Spectroscopy-based Sensor Systems 4577 (2001), pp. 12–24

  • M.E. Webber, M. Pushkarsky, C.K.N. Patel, J. Appl. Phys. 97, 113101 (2005)

    Google Scholar 

  • M.B. Pushkarsky, M.E. Webber, T. Macdonald, Appl. Phys. Lett. 88, 044103 (2006)

    Google Scholar 

  • L.S. Rothman, A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates of 2001, J. Quant. Spectrosc. Radiat. Transfer 82, 5 (2003)

    Google Scholar 

  • R. Wolfenstein, Chem. Ber. 28, 2265 (1895)

  • J.C. Oxley, J.L. Smith, K. Shinde, J. Moran, Propellants Explosives Pyrotechnics 30, 127 (2005), and references therein

  • I.G. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, M. Pushkarsky, C.K.N. Patel, Appl. Opt. (accepted)

  • Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants, Vol. 4 (National Academy of Sciences Press, 2000)

  • C.K.N. Patel, Interference free detection of TNT in Nitrate Fertilizer Rich Environment (to be published)

  • A. Mukherjee, I. Dunayevskiy, M. Prasanna, R. Go, A. Tsekoun, C.K.N. Patel, Sub-ppb Level Detection of Dimethyl Methyl Phosphonate (DMMP) Using Quantum Cascade Laser Photoacoustic Spectroscopy (to be published)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, C. Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical Warfare Agent and explosives. Eur. Phys. J. Spec. Top. 153, 1–18 (2008). https://doi.org/10.1140/epjst/e2008-00383-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2008-00383-x

Keywords

Navigation