Skip to main content

Advertisement

Log in

Space-based application of the CAN laser to LIDAR and orbital debris remediation

  • Regular Article
  • ICAN Applications
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Development of pulsed lasers for space-based science missions entail many additional challenges compared to terrestrial experiments. For systems requiring short pulses ≪1 ns with energies >100 mJ and fast repetition rates >10 kHz there are currently few if no laser architectures capable of operating with high electrical efficiency >20% and have good system stability. The emergence of a mulit-channel fiber-based Coherent-Amplifying-Network or CAN laser potentially enables such capability for space based missions. Here in this article we present an analysis of two such missions scaling up in pulse energy from ≈100 mJ for a supercontinuum LIDAR application utilising atmospheric filamentation to the higher energy demands needed for space debris remediation requiring ≈10 J pulses. This scalability of the CAN laser provides pathways for development of the core science and technology where many new novel space applications can be made possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fujii, T. Fukuchi (eds.), Laser remotesensing (CRC Press, 2005)

  2. eLISA Consortium., Nat. Phys. 11, 613 (2015)

    Article  Google Scholar 

  3. R.J. DeYoung, et al., A NASA high-power space-based laser research and applications program. NASA STI/Recon Technical Report N 83, 27200 (1983)

    Google Scholar 

  4. A. Novo-Gradac, et al., An overview of NASA’s laser risk reduction program. Geoscience and Remote Sensing Symposium, 2004, IGARSS’04, Proceedings, 2004 IEEE International, Vol. 1, IEEE (2004)

  5. G. Mourou, et al., Nat. Photonics 7, 258 (2013)

    Article  ADS  Google Scholar 

  6. J. Prawiharjo, et al., Opt. Expr. 16, 15074 (2008)

    Article  ADS  Google Scholar 

  7. R. Soulard, M.N. Quinn, G. Mourou, Appl. Opt. 54, 4640 (2015)

    Article  ADS  Google Scholar 

  8. W.S. Brocklesby, et al., Eur. Phys. J. Special Topics 223, 1189 (2014)

    Article  ADS  Google Scholar 

  9. G. Mourou, et al., Are fibe-based lasers the futureof accelerators? Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 740, 17 (2014)

    Article  Google Scholar 

  10. J. Bourderionnet, C. Bellanger, J. Primot, A. Brignon, Opt. Expr. 19, (2011)

  11. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, Opt. Lett. 20, 73 (1995)

    Article  ADS  Google Scholar 

  12. V. Jukna, et al., Space-based Femtosecond Laser Filamentation, ESA Ariadna final report 13-9291 (2015)

  13. M. Berger, et al., Remote Sens. Environ. 120, 84 (2012)

    Article  Google Scholar 

  14. T. Wagner, et al., J. Opt. A: Pure Appl. Opt. 10, 104019 (2008)

    Article  ADS  Google Scholar 

  15. R. Bourayou, et al., J. Opt. Soc. Am. B 22, 369 (2005)

    Article  ADS  Google Scholar 

  16. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, L. Wöste, Science 301, 61 (2003)

    Article  ADS  Google Scholar 

  17. C. Bellanger, et al., Opt. Lett. 35, 3931 (2010)

    Article  ADS  Google Scholar 

  18. J.-C. Liou, P. Krisko, N update on the effectiveness of postmission disposal in leo, in: Proceedings of the 64th International Astronautical Congress, IAC-13-A6.4.2 (Beijing, China, 2013)

  19. D.J. Kessler, B.G. Cour-Palais, J. Geophys. Res. Space Phys. 83, 2637 (1978)

    Article  ADS  Google Scholar 

  20. D.J. Kessler, Adv. Space Res. 11, 63 (1991)

    Article  ADS  Google Scholar 

  21. J.-C. Liou, Adv. Space Res. 47, 1865 (2011)

    Article  ADS  Google Scholar 

  22. Wormnes , Kjetil, et al., ESA technologies for space debris remediation, Proceedings of the 6th IAASS Conference: 22–25 April (2013)

  23. C. Phipps, AIP Conf. Proc., 318 (1994)

  24. W.O. Schall, Proc. SPIE 3574, 426 (1998)

    Article  ADS  Google Scholar 

  25. C. Phipps, et al., J. Propulsion Power 26, 609 (2010)

    Article  Google Scholar 

  26. C. Phipps, et al., Appl. Surface Sci. 252, 4838 (2006)

    Article  ADS  Google Scholar 

  27. T. Ebisuzaki, et al., Acta Astronautica 112, 102 (2015)

    Article  ADS  Google Scholar 

  28. Y. Takahashi, et al., New J. Phys. 11, 065009 (2008)

    Article  Google Scholar 

  29. R. Soulard, et al., Acta. Astronaut. 105, 192 (2014)

    Article  ADS  Google Scholar 

  30. C.R. Phipps, Acta Astronaut. 104, 243 (2014)

    Article  ADS  Google Scholar 

  31. A.W. Yu, et al., Fiber lasers and amplifiers for space-based science and exploration. SPIE LASE, International Society for Optics and Photonics (2012)

  32. B. Weeden, Space Policy 27, 38 (2011)

    Article  Google Scholar 

  33. A. Klenke, S. Breitkopf, M. Kienel, Opt. Lett. 38, 2283 (2013)

    Article  ADS  Google Scholar 

  34. L. Daniault, et al., Eur. Phys. J. Special Topics 224(13), 2609 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Quinn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinn, M.N., Jukna, V., Ebisuzaki, T. et al. Space-based application of the CAN laser to LIDAR and orbital debris remediation. Eur. Phys. J. Spec. Top. 224, 2645–2655 (2015). https://doi.org/10.1140/epjst/e2015-02577-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02577-5

Keywords

Navigation