Skip to main content
Log in

MHD convection of nanofluid in porous medium influenced by slanted Lorentz force

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper presents a numerical investigation on magneto-hydrodynamics combined convection in a nanofluid-saturated porous 2-D cavity with different tilting angles of applied magnetic field and aspect ratios. The moving upper horizontal wall is heated uniformly. The temperature along the bottom wall is a constant cold temperature while the adiabatic condition is maintained at the vertical sidewalls. The finite volume method is applied to solve the system of non-dimensional equations. The pertinent parameters of the current study are Hartmann number (Ha), solid volume fraction (χ), Richardson number (Ri), the aspect ratio (Ar), Darcy number (Da), and the inclination angle of the magnetic field (γ). The slope of applied magnetic field affects the magnetic field intensity and the overall rate of heat transfer is augmented in the forced convection regime than the mixed convection regime. The mean Nusselt number raises on increasing of Ar for all considered Richardson numbers. In the presence of magnetic field, the rate of heat transfer is almost equal to the amplification of solid volume concentration when Ar = 0.25, whereas, it increases for Ar > 0.25 with the raise in the solid volume concentration. An increase in Hartmann number and Darcy number is insignificant on mean rate of heat transfer in the mixed convection regime at Ar ≤ 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.E. Sarris, S.C. Kakarantzas, A.P. Grecos, N.S. Vlachos, Int. J. Heat Mass Transfer 48, 3443 (2005)

    Article  Google Scholar 

  2. J.M. Jalil, K.A. Al-Tae’y, Numer.Heat Transfer Part A 51, 899 (2007)

    Article  ADS  Google Scholar 

  3. G.R. Kefayati, M. Gorji-Bandpy, H. Sajjadi, D.D. Ganji, Sci. Iran. 19, 1053 (2012)

    Article  Google Scholar 

  4. S. Ray, D. Chatterjee, Int. Commun. Heat Mass Transfer 57, 200 (2014)

    Article  Google Scholar 

  5. S. Ray, D. Chatterjee, Numer. Heat Transfer Part A 66, 530 (2014)

    Article  ADS  Google Scholar 

  6. A. Malleswaran, S. Sivasankaran, J. Appl. Fluid Mech. 9, 311 (2016)

    Article  Google Scholar 

  7. S.U. Choi, J.A. Estman, A.S.M.E. Publ Fed. 48, 99 (1995)

    Google Scholar 

  8. R.K. Tiwari, M.K. Das, Int. J. Heat Mass Transfer 50, 2002 (2007).

    Article  Google Scholar 

  9. M. Alinia, D.D. Ganji, M. Gorji-Bandpy, Int. Commun. Heat Mass Transfer 38, 1428 (2011).

    Article  Google Scholar 

  10. S.M. Aminossadati, A. Kargar, B. Ghasemi, Int. J. Therm. Sci. 52, 102 (2012)

    Article  Google Scholar 

  11. A. Fereidoon, S. Saedodin, M. Hemmat Esfe, M.J. Noroozi, Eng. Appl. Comput. Fluid Mech. 7, 55 (2013)

    Google Scholar 

  12. M.H. Esfe, M. Akbari, D.S. Toghraie, A. Karimipour, M. Afrand, Heat Transfer Res. 45, 409 (2014)

    Article  Google Scholar 

  13. K. Khanafer, K. Vafai, Numer. Heat Transfer Part A 42, 465 (2002)

    Article  ADS  Google Scholar 

  14. I.A. Badruddin, Z.A. Zainal, P.A. Aswatha Narayana, K.N. Seetharamu, Int. Commun. Heat Mass Transfer 33, 491 (2006)

    Article  Google Scholar 

  15. E. Vishnuvardhanarao, M.K. Das, Numer. Heat Transfer Part A 53, 88 (2007)

    Article  ADS  Google Scholar 

  16. T. Basak, P.V. Krishna Pradeep, S. Roy, I. Pop, Int. J. Heat Mass Transfer 54, 1706 (2011)

    Article  Google Scholar 

  17. L. Agarwal, A. Satheesh, C.G. Mohan, Heat Transfer Asian Res. 44, 305 (2015)

    Article  Google Scholar 

  18. M.M. Rahman, H.F. Öztop, R. Saidur, S. Mekhilef, K. Al-Salem, Therm. Sci. 19, 1761 (2015).

    Article  Google Scholar 

  19. A.J. Chamkha, M.A. Ismael, Int. J. Therm. Sci. 67, 135 (2013)

    Article  Google Scholar 

  20. A.M. Rashad, A.J. Chamkha, C. RamReddy, P.V.S.N. Murthy, Heat Transfer Asian Res. 43, 397 (2014)

    Article  Google Scholar 

  21. A.A. Hassan, M.A. Ismael, Int. J. Therm. Env. Eng. 10, 93 (2015)

    Google Scholar 

  22. S. Sureshkumar, M. Muthtamilselvan, Eur. Phys. J. Plus 131, 95 (2016)

    Article  Google Scholar 

  23. M. Muthtamilselvan, S. Sureshkumar, Nonlinear Eng. 7, 1 (2018)

    Article  ADS  Google Scholar 

  24. S. Ergun, Chem. Eng. Prog. 48, 89 (1952)

    Google Scholar 

  25. J.C. Maxwel, in A treatise on electricity and magnetism (Oxford University Press, Cambridge, 1904,) pp. 435–441

  26. W. Yu, S.U. Choi, J. Nanopart. Res. 5, 167 (2003)

    Article  ADS  Google Scholar 

  27. S.V. Patankar, inNumerical heat transfer and fluid flow (McGraw Hill book company, New York, 1980,) pp. 126–130

  28. T. Hayase, J.A. Humphrey, R.A. Greif, J. Comput. Phys. 98, 108 (1992)

    Article  ADS  Google Scholar 

  29. K.M. Khanafer, A.J. Chamkha, Int. J. Heat Mass Transfer 42, 2465 (1999)

    Article  Google Scholar 

  30. R. Iwatsu, J.M. Hyun, K. Kuwahara, Int. J. Heat Mass Transfer 36, 1601 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Muthtamilselvan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sureshkumar, S., Muthukumar, S., Muthtamilselvan, M. et al. MHD convection of nanofluid in porous medium influenced by slanted Lorentz force. Eur. Phys. J. Spec. Top. 229, 331–346 (2020). https://doi.org/10.1140/epjst/e2019-900085-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900085-0

Navigation