Skip to main content
Log in

Energy measurement and fragment identification using digital signals from partially depleted Si detectors

  • Special Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A study of identification properties of a Si-Si ΔE-E telescope exploiting an underdepleted residual-energy detector has been performed. Five different bias voltages have been used, one corresponding to full depletion, the others associated with a depleted layer ranging from 90% to 60% of the detector thickness. Fragment identification has been performed using either the ΔE-E technique or the Pulse Shape Analysis (PSA). Both detectors are reverse mounted: particles enter from the low field side, to enhance the PSA performance. The achieved charge and mass resolution has been quantitatively expressed using a Figure of Merit (FoM). Charge collection efficiency has been evaluated and the possibility of energy calibration corrections has been considered. We find that the ΔE-E performance is not affected by incomplete depletion even when only 60% of the wafer is depleted. Isotopic separation capability improves at lower bias voltages with respect to full depletion, though charge identification thresholds are higher than at full depletion. Good isotopic identification via PSA has been obtained from a partially depleted detector, whose doping uniformity is not good enough for isotopic identification at full depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. INDRA Collaboration (E. Galichet et al.), Phys. Rev. C 79, 064614 (2009) DOI:10.1103/PhysRevC.79.064614.

    Article  ADS  Google Scholar 

  2. T.X. Liu et al., Phys. Rev. C 76, 034603 (2007) DOI:10.1103/PhysRevC.76.034603.

    Article  ADS  Google Scholar 

  3. M. Di Toro et al., Eur. Phys. J. A 13, 155 (2002) DOI:10.1140/epja1339-28.

    ADS  Google Scholar 

  4. Ad.R. Raduta, F. Gulminelli, Phys. Rev. C 75, 044605 (2007) DOI:10.1103/PhysRevC.75.044605.

    Article  ADS  Google Scholar 

  5. J. Pouthas et al., Nucl. Instrum. Methods A 357, 418 (1995) DOI:10.1016/0168-9002(94)01543-0.

    Article  ADS  Google Scholar 

  6. S. Aiello et al., Nucl. Phys. A 583, 461 (1995) DOI:10.1016/0375-9474(94)00705-R.

    Article  ADS  Google Scholar 

  7. A. Moroni et al., Nucl. Instrum. Methods A 556, 516 (2006) DOI:10.1016/j.nima.2005.10.123.

    Article  ADS  Google Scholar 

  8. S. Wuenschel et al., Nucl. Instrum. Methods A 604, 578 (2009) DOI:10.1016/j.nima.2009.03.187.

    Article  ADS  Google Scholar 

  9. D.A. Bromley, IRE Trans. Nucl. Sci. 9, 135 (1962) DOI:10.1109/TNS2.1962.4315986.

    Article  ADS  Google Scholar 

  10. FAZIA Collaboration, http://fazia2.in2p3.fr/spip.

  11. FAZIA Collaboration (R. Bougault et al.), Eur. Phys. J. A 50, 47 (2014) DOI:10.1140/epja/i2014-14047-4.

    Article  ADS  Google Scholar 

  12. FAZIA Collaboration (L. Bardelli et al.), Nucl. Instrum. Methods A 654, 272 (2011) DOI:10.1016/j.nima.2011.06.063.

    Article  ADS  Google Scholar 

  13. FAZIA Collaboration (S. Carboni et al.), Nucl. Instrum. Methods A 664, 251 (2012) DOI:10.1016/j.nima.2011.10.061.

    Article  ADS  Google Scholar 

  14. FAZIA Collaboration (N. Le Neindre et al.), Nucl. Instrum. Methods A 701, 145 (2013) DOI:10.1016/j.nima.2012.11.005.

    Article  ADS  Google Scholar 

  15. FAZIA Collaboration (G. Pasquali et al.), Eur. Phys. J. A 48, 158 (2012) DOI:10.1140/epja/i2012-12158-6.

    Article  ADS  Google Scholar 

  16. M. Bruno et al., Eur. Phys. J. A 49, 128 (2013) DOI:10.1140/epja/i2013-13128-2.

    Article  ADS  Google Scholar 

  17. J.A. Dueñas et al., Nucl. Instrum. Methods A 714, 48 (2013) DOI:10.1016/j.nima.2013.02.032.

    Article  ADS  Google Scholar 

  18. FBK web site, http://www.fbk.eu.

  19. FAZIA Collaboration (L. Bardelli et al.), Nucl. Instrum. Methods A 602, 501 (2009) DOI:10.1016/j.nima.2009.01.033.

    Article  ADS  Google Scholar 

  20. FAZIA Collaboration (L. Bardelli et al.), Nucl. Instrum. Methods A 605, 353 (2009) DOI:10.1016/j.nima.2009.03.247.

    Article  ADS  Google Scholar 

  21. H. Hamrita et al., Nucl. Instrum. Methods A 531, 607 (2004) DOI:10.1016/j.nima.2004.05.112.

    Article  ADS  Google Scholar 

  22. G. Pasquali et al., Nucl. Instrum. Methods A 570, 126 (2007) DOI:10.1016/j.nima.2006.10.008.

    Article  ADS  Google Scholar 

  23. B.E. Baldinger, W. Franzen, Amplitude and Time Measurement in Nuclear Physics, in Advances in Electronics and Electron Physics, Vol. VIII (Academic Press, 1955).

  24. B.W. Loo, F.S. Goulding, D. Gao, IEEE Trans. Nucl. Sci. NS-35, 114 (1988) DOI:10.1109/23.12686.

    Article  ADS  Google Scholar 

  25. NUCL-EX Collaboration (L. Bardelli et al.), Nucl. Instrum. Methods A 560, 524 (2006) DOI:10.1016/j.nima.2005.12.250.

    Article  ADS  Google Scholar 

  26. F. Hubert et al., At. Data Nucl. Data Tables 46, 1 (1990) DOI:10.1016/0092-640X(90)90001-Z.

    Article  ADS  Google Scholar 

  27. R.A. Winyard, J.E. Lutkin, G.W. McBeth, Nucl. Instrum. Methods 95, 141 (1971) DOI:10.1016/0029-554X(71)90054-1.

    Article  ADS  Google Scholar 

  28. B. Braunn et al., Nucl. Instrum. Methods B 269, 2676 (2011) DOI:10.1016/j.nimb.2011.08.010.

    Article  ADS  Google Scholar 

  29. NUCL-EX Collaboration (L. Bardelli), in Proceedings of the International Workshop on Multifragmentation IWM2005 (2005).

  30. Z. Sosin, Nucl. Instrum. Methods A 693, 170 (2012) DOI:10.1016/j.nima.2012.07.020.

    Article  ADS  Google Scholar 

  31. M. Parlog et al., Nucl. Instrum. Methods A 613, 290 (2010) DOI:10.1016/j.nima.2009.12.010.

    Article  ADS  Google Scholar 

  32. H. Hamrita et al., Nucl. Instrum. Methods A 642, 59 (2011) DOI:10.1016/j.nima.2011.03.053.

    Article  ADS  Google Scholar 

  33. C.-M. Hsieh et al., IEEE Trans. Electron Devices ED-30, 686 (1983).

    Article  ADS  Google Scholar 

  34. J.A. Zoutendyk, C.J. Malone, IEEE Trans. Nucl. Sci. NS-31, 1101 (1984).

    Article  ADS  Google Scholar 

  35. H.L. Grubin et al., IEEE Trans. Nucl. Sci. NS-31, 1161 (1984).

    Article  ADS  Google Scholar 

  36. F. Fontanelli et al., Nucl. Instrum. Methods A 269, 603 (1988).

    Article  ADS  Google Scholar 

  37. Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing (Pearson, 2010).

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to G. Pasquali.

Additional information

Communicated by D. Pierroutsakou

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

for the FAZIA Collaboration., Pasquali, G., Pastore, G. et al. Energy measurement and fragment identification using digital signals from partially depleted Si detectors. Eur. Phys. J. A 50, 86 (2014). https://doi.org/10.1140/epja/i2014-14086-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14086-9

Navigation