Skip to main content
Log in

A multi-channel model for an \( \alpha\) plus 6He nucleus cluster

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A multi-channel algebraic scattering (MCAS) method has been used to solve coupled sets of Lippmann-Schwinger equations for the \( \alpha + {}^{6}{\rm He}\) cluster system, so finding a model spectrum for 10Be to more than 10MeV excitation. Three states of 6He were included and the resonance character of the two excited states taken into account in finding solutions. A model Hamiltonian has been found that gives very good agreement with the known bound states and with some low-lying resonances of 10Be . More resonance states are predicted than those which have been observed as yet. The method also yields S -matrices which we have used to evaluate low-energy 6He - \( \alpha\) scattering cross sections. Reasonable reproduction of low-energy differential cross sections and of energy variation of cross sections measured at fixed scattering angles have been found. Enlarging the channel space by including two higher energy states of 6He , assuming values for their spin-parities, leads to an enlarged spectrum for 10Be in which the number and distribution of resonances show similarity to the known spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1961)

    Google Scholar 

  2. O.A. Yakubovski, Sov. J. Nucl. Phys. 5, 937 (1967)

    Google Scholar 

  3. E.O. Alt, P. Grassberger, W. Sandhas, Nucl. Phys. B 2, 167 (1967)

    Article  ADS  Google Scholar 

  4. S.B. Dubovichenko, Yu.N. Uzikov, Phys. Part. Nucl. 42, 251 (2011)

    Article  Google Scholar 

  5. J. Rotureau, P. Danielewicz, G. Hagen, F. Nunes, T. Papenbrock, arXiv: 1611:04554 [nucl-th] (2016)

  6. P. Navrá, Phys. Scr. 91, 053002 (2016)

    Article  ADS  Google Scholar 

  7. S. Karataglidis, P.G. Hansen, B.A. Brown, K. Amos, P.J. Dortmans, Phys. Rev. Lett. 79, 1447 (1997)

    Article  ADS  Google Scholar 

  8. S. Karataglidis, P.J. Dortmans, K. Amos, C. Bennhold, Phys. Rev. C 61, 02439 (2000)

    Article  Google Scholar 

  9. K. Amos, P.J. Dortmans, H.V. von Geramb, S. Karataglidis, J. Raynal, Adv. Nucl. Phys. 25, 275 (2000)

    Google Scholar 

  10. P.R. Fraser, K. Amos, S. Karataglidis, L. Canton, G. Pisent, J.P. Svenne, Eur. Phys. J. A 35, 69 (2008)

    Article  ADS  Google Scholar 

  11. F.G. Perey, B. Buck, Nucl. Phys. 32, 353 (1962)

    Article  Google Scholar 

  12. D. Suzuki et al., Phys. Rev. C 87, 054301 (2013)

    Article  ADS  Google Scholar 

  13. Yu.A. Lashko, G.F. Filippov, V.S. Vasileski, Nucl. Phys. A 958, 78 (2017)

    Article  ADS  Google Scholar 

  14. D.R. Tilley et al., Nucl. Phys. A 708, 3 (2002)

    Article  ADS  Google Scholar 

  15. P. Fraser, K. Amos, L. Canton, G. Pisent, S. Karataglidis, J.P. Svenne, D. van der Knijff, Phys. Rev. Lett. 101, 0242501 (2008)

    Article  ADS  Google Scholar 

  16. L. Canton, P.R. Fraser, J.P. Svenne, K. Amos, S. Karataglidis, D. van der Knijff, Phys. Rev. C 83, 047603 (2011)

    Article  ADS  Google Scholar 

  17. P.R. Fraser, L. Canton, R. Fossion, K. Amos, S. Karataglidis, J.P. Svenne, D. van der Knijff, EPJ Web of Conferences 63, 02010 (2013)

    Article  Google Scholar 

  18. P.R. Fraser et al., Phys. Rev. C 94, 034603 (2016)

    Article  ADS  Google Scholar 

  19. T. Tamura, Rev. Mod. Phys. 37, 679 (1965)

    Article  ADS  Google Scholar 

  20. D.J. Rowe, Nuclear Collective Motion (World Scientific, Singapore, 2010)

  21. S. Iwasaki, T. Marumori, F. Sakata, K. Takada, Prog. Theor. Phys. 56, 1140 (1976)

    Article  ADS  Google Scholar 

  22. F. Sakata, G. Holzwarth, Prog. Theor. Phys. 61, 1649 (1979)

    Article  ADS  Google Scholar 

  23. F. Barranco, R.A. Broglia, G. Gori, E. Vigezzi, P.F. Bortignon, J. Terasaki, Phys. Rev. Lett. 83, 2147 (1999)

    Article  ADS  Google Scholar 

  24. L. Canton, G. Pisent, J.P. Svenne, D. van der Knijff, K. Amos, S. Karataglidis, Phys. Rev. Lett. 94, 122503 (2005)

    Article  ADS  Google Scholar 

  25. K. Amos, L. Canton, G. Pisent, J.P. Svenne, D. van der Knijff, Nucl. Phys. A 728, 65 (2003) and references therein

    Article  ADS  Google Scholar 

  26. V.N. Krasnopol'sky, V.I. Kukulin, Sov. J. Nucl. Phys. 20, 883 (1974)

    Google Scholar 

  27. V.I. Kukulin, V.N. Pomerantsev, Ann. Phys. 111, 330 (1978)

    Article  ADS  Google Scholar 

  28. S. Saito, Prog. Theor. Phys 41, 705 (1969)

    Article  ADS  Google Scholar 

  29. E.W. Schmidt, in Proceedings of the Workshop in Few-Body Problems in Nuclear Physics (Trieste, Italy, 1978), edited by G. Pisent, V. Vanzani, L. Fonda (IAEA, 1978) p. 389

  30. L. Canton, G. Pisent, J.P. Svenne, K. Amos, S. Karataglidis, Phys. Rev. Lett. 96, 072502 (2006)

    Article  ADS  Google Scholar 

  31. K. Amos, L. Canton, P.R. Fraser, S. Karataglidis, J.P. Svenne, D. van der Knijff, Nucl. Phys. A 912, 7 (2013)

    Article  ADS  Google Scholar 

  32. Yu.A. Lashko, G.F. Filippov, L. Canton, Ukr. J. Phys. 60, 406 (2015)

    Article  Google Scholar 

  33. G.V. Rogachev et al., J. Phys. Conf. Ser. 569, 012004 (2014)

    Article  Google Scholar 

  34. D. Dell'Aquila et al., Phys. Rev. C 93, 024611 (2016)

    Article  ADS  Google Scholar 

  35. L. Canton, G. Pisent, K. Amos, S. Karataglidis, J.P. Svenne, D. van der Knijff, Phys. Rev. C 74, 064605 (2006)

    Article  ADS  Google Scholar 

  36. T. Teichmann, E. Wigner, Phys. Rev. 87, 123 (1952)

    Article  ADS  Google Scholar 

  37. C. Broggini, L. Canton, G. Fiorentini, F.L. Villante, J. Cosmol. Astropart. Phys. 06, 030 (2012)

    Article  ADS  Google Scholar 

  38. K. Amos, Contribution to INPC16, Adelaide, to be published in Proceedings of Science (2017)

  39. C.W. de Jager, H. de Vries, C. de Vries, At. Data Nucl. Data Tables 14, 479 (1974)

    Article  ADS  Google Scholar 

  40. L.-B. Wang et al., Phys. Rev. Lett. 93, 14250 (2004)

    Google Scholar 

  41. D.R. Tilley et al., Nucl. Phys. A 745, 155 (2004)

    Article  ADS  Google Scholar 

  42. D.C. Zheng, B.R. Barrett, J.P. Vary, W.C. Haxton, C.L. Song, Phys. Rev. C 52, 2488 (1995)

    Article  ADS  Google Scholar 

  43. A. Etchegoyen, W.D.M. Rae, N.S. Godwin, OXBASH-MSU, the Oxford-Buenos-Aries-Michigan State University shell model code, MSU version by B.A. Brown (1986)

  44. www.nndc.bnl.gov/exfor

  45. X. Mugeot et al., Phys. Lett. B 718, 441 (2012)

    Article  ADS  Google Scholar 

  46. A. Lagoyannis et al., Phys. Lett. B 518, 27 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Amos.

Additional information

Communicated by S. Hands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amos, K., Canton, L., Fraser, P.R. et al. A multi-channel model for an \( \alpha\) plus 6He nucleus cluster. Eur. Phys. J. A 53, 72 (2017). https://doi.org/10.1140/epja/i2017-12270-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12270-1

Navigation