Skip to main content
Log in

Systematics and mechanisms of \(\alpha \) production with weakly and strongly bound projectiles

  • Letter
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A systematic study of the \(\alpha \)-particle production in reactions involving both the weakly and strongly bound projectiles at energies around the Coulomb barrier has been performed and a distinction based on projectile type is obtained. The significant contribution of break up of projectile like nucleus after neutron transfer apart from processes like direct break up of the projectile, capture of a fragment of the projectile by the target leaving \(\alpha \) as a spectator suggest that both \(\alpha \) and neutron binding energies play a vital role in \(\alpha \) production. In view of this, it is suggested that E\(^{\mathrm{{av}}}_{\alpha }\), average of \(\alpha \) binding energies of the projectile and projectile like nucleus after neutron transfer is a suitable variable to describe the \(\alpha \) production data for variety of projectiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: More measurements of alpha production data with RIB projectiles is required to extend the systematics.]

References

  1. H.C. Britt, A.R. Quinton, Phys. Rev. 124, 877 (1961)

    ADS  Google Scholar 

  2. J.L. Québert et al., Phys. Rev. Lett. 32, 1136 (1974)

    ADS  Google Scholar 

  3. C.M. Castaneda et al., Phys. Rev. C 21, 179 (1980)

    ADS  Google Scholar 

  4. S. Santra et al., Phys. Rev. C 85, 014612 (2012)

    ADS  Google Scholar 

  5. E.F. Aguilera et al., Phys. Rev. Lett. 84, 5058 (2000)

    ADS  Google Scholar 

  6. H. Utsunomiya et al., Phys. Rev. C 28, 1975 (1983)

    ADS  Google Scholar 

  7. M.K. Pradhan et al., Phys. Rev. C 88, 064603 (2013)

    ADS  Google Scholar 

  8. H. Kumawat et al., Phys. Rev. C 86, 024607 (2012)

    ADS  Google Scholar 

  9. D. Escrig et al., Nucl. Phys. A 792(1), 2 (2007)

    ADS  Google Scholar 

  10. A.M. Moro, F.M. Nunes, Nucl. Phys. A 767, 138 (2006)

    ADS  Google Scholar 

  11. J.P. Fernández-García et al., Phys. Lett. B 693(3), 310 (2010)

    ADS  Google Scholar 

  12. V. Jha, V.V. Parkar, S. Kailas, Phys. Rep. 845, 1 (2020). and references therein

  13. V.V. Parkar, V. Jha, S. Kailas, Phys. Rev. C 94, 024609 (2016)

    ADS  Google Scholar 

  14. V.V. Parkar et al., Phys. Rev. C 97, 014607 (2018)

    ADS  Google Scholar 

  15. V.V. Parkar et al., Phys. Rev. C 98, 014601 (2018)

    ADS  Google Scholar 

  16. A. Gómez Camacho et al., Chinese Phys. C 41(12), 124103 (2017)

    ADS  Google Scholar 

  17. A. Shrivastava et al., Phys. Lett. B 633, 463 (2006)

    ADS  Google Scholar 

  18. S.K. Pandit et al., Phys. Rev. C 93, 061602(R) (2016)

    ADS  MathSciNet  Google Scholar 

  19. D. Chattopadhyay et al., Phys. Rev. C 97, 051601(R) (2018)

    ADS  Google Scholar 

  20. F.A. Souza et al., Eur. Phys. J. A 44(2), 181 (2010)

    ADS  Google Scholar 

  21. D. Chattopadhyay et al., Phys. Rev. C 98, 014609 (2018)

    ADS  Google Scholar 

  22. A. Pakou et al., Phys. Lett. B 633(6), 691 (2006)

    ADS  Google Scholar 

  23. D. Chattopadhyay et al., Phys. Rev. C 94, 061602(R) (2016)

    ADS  Google Scholar 

  24. C. Signorini et al., Phys. Rev. C 67, 044607 (2003)

    ADS  Google Scholar 

  25. S. Santra et al., Phys. Lett. B 677(3–4), 139 (2009)

    ADS  Google Scholar 

  26. M.K. Pradhan et al., Phys. Rev. C 83, 064606 (2011)

    ADS  Google Scholar 

  27. L. Acosta et al., Phys. Rev. C 84, 044604 (2011)

    ADS  Google Scholar 

  28. L. Standyło et al., Phys. Rev. C 87, 064603 (2013)

    ADS  Google Scholar 

  29. I. Martel, N. Keeley, K.W. Kemper, K. Rusek, Phys. Rev. C 102, 034609 (2020)

    ADS  Google Scholar 

  30. V.V. Parkar et al., Phys. Rev. C 104, 054603 (2021)

    ADS  Google Scholar 

  31. G.R. Kelly et al., Phys. Rev. C 63, 024601 (2000)

    ADS  Google Scholar 

  32. J. Lei, A.M. Moro, Phys. Rev. C 92, 044616 (2015)

    ADS  Google Scholar 

  33. B.V. Carlson, R. Capote, M. Sin, Few-Body Syst. 57(5), 307 (2016)

    ADS  Google Scholar 

  34. G. Potel, F.M. Nunes, I.J. Thompson, Phys. Rev. C 92, 034611 (2015)

    ADS  Google Scholar 

  35. K.O. Pfeiffer, E. Speth, K. Bethge, Nucl. Phys. A 206(3), 545 (1973)

    ADS  Google Scholar 

  36. A. Pakou et al., Phys. Rev. Lett. 90, 202701 (2003)

    ADS  Google Scholar 

  37. F.A. Souza et al., Nucl. Phys. A 821, 36 (2009)

    ADS  Google Scholar 

  38. H. Kumawat et al., Phys. Rev. C 81, 054601 (2010)

    ADS  Google Scholar 

  39. S.K. Pandit et al., Phys. Rev. C 96, 044616 (2017)

    ADS  Google Scholar 

  40. H. Utsunomiya et al., Nucl. Phys. A 334(1), 127 (1980)

    ADS  Google Scholar 

  41. M. Hugi et al., Nucl. Phys. A 368(1), 173 (1981)

    ADS  Google Scholar 

  42. C. Signorini et al., Prog. Theor. Phys. Supp. 154, 272 (2004)

    ADS  Google Scholar 

  43. R.J. Woolliscroft et al., Phys. Rev. C 68, 014611 (2003)

    ADS  Google Scholar 

  44. C. Signorini et al., Eur. Phys. J. A 10(3), 249 (2001)

    ADS  Google Scholar 

  45. C.S. Palshetkar et al., Phys. Rev. C 89, 064610 (2014)

    ADS  Google Scholar 

  46. G.M. Jin et al., Nucl. Phys. A 349(1), 285 (1980)

    ADS  Google Scholar 

  47. T. Nomura et al., Phys. Rev. Lett. 40, 694 (1978)

    ADS  Google Scholar 

  48. H. Kumawat et al., Phys. Rev. C 105, 024611 (2022)

    ADS  Google Scholar 

  49. H. Kumawat et al., Phys. Rev. C 106, 024602 (2022)

    ADS  Google Scholar 

  50. C. Joshi et al., Phys. Rev. C 105, 034615 (2022)

    ADS  Google Scholar 

  51. A. Gavron, Phys. Rev. C 21, 230 (1980)

    ADS  Google Scholar 

  52. N. Matsuoka et al., Nucl. Phys. A 311(1), 173 (1978)

    ADS  MathSciNet  Google Scholar 

  53. B. Neumann et al., Z. Phys. A 296(2), 113 (1980)

    ADS  MathSciNet  Google Scholar 

  54. V.V. Parkar, V. Jha, S. Kailas, arXiv:2001.02448v1 (2020)

  55. J.R. Wu, I.Y. Lee, Phys. Rev. Lett. 45, 8 (1980)

    ADS  Google Scholar 

  56. E. Gadioli et al., Phys. Lett. B 394(1), 29 (1997)

    ADS  Google Scholar 

  57. M.S. Hussein et al., Phys. Rev. C 88, 047601 (2013)

    ADS  Google Scholar 

  58. D.R. Otomar et al., Phys. Rev. C 92, 064609 (2015)

    ADS  Google Scholar 

  59. J.J. Kolata, Phys. Rev. C 63, 061604 (2001)

    ADS  Google Scholar 

  60. J.P. Fernández-García et al., Phys. Rev. C 92, 044608 (2015)

    ADS  Google Scholar 

  61. C.S. Palshetkar et al., Phys. Rev. C 89, 024607 (2014)

    ADS  Google Scholar 

  62. A. Shrivastava et al., Phys. Rev. Lett. 103, 232702 (2009)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors V.V.P. and S.K. acknowledge the financial support from Young Scientist Research grant and Senior Scientist programme, respectively, from the Indian National Science Academy (INSA), Government of India, in carrying out these investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Parkar.

Additional information

Communicated by Arnau Rios Huguet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkar, V.V., Jha, V. & Kailas, S. Systematics and mechanisms of \(\alpha \) production with weakly and strongly bound projectiles. Eur. Phys. J. A 59, 88 (2023). https://doi.org/10.1140/epja/s10050-023-01011-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01011-w

Navigation