Skip to main content
Log in

Mic–Mac model based on the Wigner–Kirkwood method

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

About a decade ago we proposed a new Microscopic–Macroscopic (Mic–Mac) model where the semiclassical Wigner–Kirkwood expansion of the energy up to fourth-order in \(\hbar \) is used to compute the shell corrections in a deformed Woods-Saxon potential instead of the usual Strutinsky averaging scheme [1, 2]. For a set of 551 even-even nuclei computed with this new model, we found a rms deviation of 610 keV from the experimental masses, similar to the value obtained using the well-known Finite Range Droplet Model and the Lublin–Strasbourg Drop Model for the same set of nuclei. In a next step, we compute the ground-state properties of these 551 nuclei with the same method but using the mean-field provided by the Gogny forces within an Extended Thomas-Fermi approximation. We find that this Mic–Mac model using the Gogny D1S (D1M) force gives a fairly good description of the ground-state energies with a rms deviation of 834 keV (819 keV). This implies that Mic–Mac models based on effective two-body forces, for example Gogny D1S and D1M interactions, perform practically as well as the most efficient Mic–Mac models regarding ground-state properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data described in this manuscript is available from Ameeya A. Bhagwat on request.]

References

  1. A. Bhagwat, X. Viñas, M. Centelles, P. Schuck, R. Wyss, Phys. Rev. C 81, 044321 (2010)

    ADS  Google Scholar 

  2. A. Bhagwat, X. Viñas, M. Centelles, P. Schuck, R. Wyss, Phys. Rev. C 86, 044316 (2012)

    ADS  Google Scholar 

  3. H.L. Crawford et al., Phys. Rev. Lett. 129, 212501 (2022)

    ADS  Google Scholar 

  4. D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)

    ADS  Google Scholar 

  5. Li. Guo-Qiang, J. Phys. G: Nucl. Part. Phys. 17, 1 (1991)

    ADS  Google Scholar 

  6. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635, 231 (1998)

    ADS  Google Scholar 

  7. J.R. Stone, P.-G. Reinhard, Prog. Part. Nucl. Phys. 58, 587 (2007)

    ADS  Google Scholar 

  8. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. Lett. 102, 152503 (2009)

    ADS  Google Scholar 

  9. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 88, 024308 (2013)

    ADS  Google Scholar 

  10. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)

    ADS  Google Scholar 

  11. J.F. Berger, M. Girod, D. Gogny, Comp. Phys. Commun. 63, 365 (1991)

    ADS  Google Scholar 

  12. F. Chappert, M. Girod, S. Hilaire, Phys. Lett. B 668, 420 (2008)

    ADS  Google Scholar 

  13. S. Goriely, S. Hilaire, M. Girod, S. Péru, Phys. Rev. Lett. 102, 242501 (2009)

    ADS  Google Scholar 

  14. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005)

    ADS  Google Scholar 

  15. V.M. Strutinsky, Nucl. Phys. 95, 420 (1969)

    Google Scholar 

  16. V.M. Strutinsky, Nucl. Phys. 122, 1 (1968)

    Google Scholar 

  17. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 1980)

    Google Scholar 

  18. H. Krivine, M. Casas, J. Martorell, Ann. Phys. (NY) 200, 304 (1990)

    ADS  Google Scholar 

  19. P. Schuck, X. Viñas, Phys. Lett. B 302, 1 (1993)

    ADS  Google Scholar 

  20. M. Centelles, X. Vinñas, M. Durand, P. Schuck, D. Von-Eiff, Ann. Phys. (NY) 266, 207 (1998)

    ADS  Google Scholar 

  21. M. Brack, C. Guet, H.-B. Håkansson, Phys. Rep. 123, 275 (1985)

    ADS  Google Scholar 

  22. H.P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    ADS  Google Scholar 

  23. Y.H. Chu, B.K. Jennings, M. Brack, Phys. Lett. B 68, 407 (1977)

    ADS  Google Scholar 

  24. C. Mondal, X. Viñas, M. Centelles, J.N. De, Phys. Rev. C 102, 015802 (2020)

    ADS  Google Scholar 

  25. B. Mohammed-Azizi, D.E. Medjadi, Phys. Rev. C 74, 054302 (2006)

    ADS  Google Scholar 

  26. G.G. Bunatian, V.M. Kolomietz, V.M. Strutinsky, Nucl. Phys. A 188, 225 (1972)

    ADS  Google Scholar 

  27. E. Wigner, Phys. Rev. 40, 749 (1932)

    ADS  Google Scholar 

  28. J.G. Kirkwood, Phys. Rev. 44, 33 (1933)

    ADS  Google Scholar 

  29. B.K. Jennings, R.K. Bhaduri, M. Brack, Nucl. Phys. A 253, 29 (1975)

    ADS  Google Scholar 

  30. M. Brack, R.K. Bhaduri, Semi-Classical Physics (Addison-Wesley Publishing Co., New York, 1997)

    Google Scholar 

  31. M. Centelles et al., Phys. Rev. C 74, 034332 (2006). (and references cited therein)

    ADS  Google Scholar 

  32. M. Centelles, P. Schuck, X. Viñas, Ann. Phys. 322, 363 (2007)

    ADS  Google Scholar 

  33. A. Bhagwat, R. Wyss, X. Viñas, P. Schuck, Int. J. Mod. Phys. E 19, 747 (2010)

    ADS  Google Scholar 

  34. S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, T.R. Werner, Comp. Phys. Comm. 46, 379 (1987)

    ADS  Google Scholar 

  35. W. Nazarewicz et al., Nuc. Phys. A 435, 397 (1985)

    ADS  Google Scholar 

  36. I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004)

    ADS  Google Scholar 

  37. W. Satula, R. Wyss, Rep. Prog. Phys. 68, 131 (2005). (and references therein)

    ADS  Google Scholar 

  38. H.J. Lipkin, Ann. Phys. (N.Y.) 9, 272 (1960)

    ADS  Google Scholar 

  39. Y. Nogami, Phys. Rev. 134, B313 (1964)

    ADS  Google Scholar 

  40. H.C. Pradhan, Y. Nogami, J. Law, Nucl. Phys. A 201, 357 (1973)

    ADS  Google Scholar 

  41. P. Möller, J.R. Nix, K.-L. Kratz, Atom. Data Nucl. Data Tables 66, 131 (1997)

    ADS  Google Scholar 

  42. K. Pomorski, J. Dudek, Phys. Rev. C 67, 044316 (2003)

    ADS  Google Scholar 

  43. A. Bhagwat, M. Centelles, X. Viñas, P. Schuck, Phys. Rev. C 103, 024321 (2021)

    ADS  Google Scholar 

  44. O. Bohigas, X. Campi, H. Krivine, J. Treiner, Phys. Lett. B 64, 381 (1976)

    ADS  Google Scholar 

  45. A. Bhagwat, M. Centelles, X. Viñas, P. Schuck, Phys. Rev. C 103, 024320 (2021)

    ADS  Google Scholar 

  46. M. Centelles, X. Viñas, M. Barranco, P. Schuck, Nucl. Phys. A 519, 73 (1990)

    ADS  Google Scholar 

  47. M. Centelles, X. Viñas, M. Barranco, P. Schuck, Ann. Phys. (NY) 221, 165 (1993)

    ADS  Google Scholar 

  48. V.B. Soubbotin, X. Viñas, Nucl. Phys. A 665, 291 (2000)

  49. K. A. Gridnev, V. B. Soubbotin, X. Viñas and M. Centelles, Quantum Theory in honour of Vladimir A. Fock, Y. Novozhilov and V. Novozhilov (Eds.) Publishing Group of St.Petersburg University 1998, p.118; arXiv:1704.03858

  50. V.B. Soubbotin, V.I. Tselyaev, X. Viñas, Phys. Rev. C 67, 014324 (2003)

    ADS  Google Scholar 

  51. G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1287 (2012)

    Google Scholar 

  52. CEA web page www-phynu.cea.fr

  53. N. Pillet, S. Hilaire, Eur. Phys. J. A 53, 193 (2017)

    ADS  Google Scholar 

  54. L. M. Robledo, HFBaxial computer code (2002)

  55. D. Freedman, P. Diaconis, Z. Wahrscheinlichkeitstheorie verw. Gebiete 57, 453 (1981)

    MathSciNet  Google Scholar 

  56. A.J. Izenman, J. Am. Stat. Assoc. 86, 205 (1991)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

M. C. and X. V. acknowledge partial support from Grants No. PID2020-118758GB-I00 and No. CEX2019–000918-M (through the “Unit of Excellence María de Maeztu 2020-2023” award to ICCUB) from the Spanish MCIN/AEI/10.13039/501100011033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bhagwat.

Additional information

Communicated by David Blaschke.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagwat, A., Centelles, M., Viñas, X. et al. Mic–Mac model based on the Wigner–Kirkwood method. Eur. Phys. J. A 59, 299 (2023). https://doi.org/10.1140/epja/s10050-023-01209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01209-y

Navigation