Skip to main content
Log in

An all-electrical torque differential magnetometer operating under ambient conditions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

An all-electrical torque differential magnetometry (also known as cantilever magnetometry) setup employing piezoelectric quartz tuning forks is demonstrated. The magnetometer can be operated under ambient conditions as well as low temperatures and pressures. It extends the allowed specimen mass range up to several 10 μg without any significant reduction in the sensitivity. Operation under ambient conditions and a simple all-electrical design of the magnetometer should allow for an easy integration with other experimental setups. The uniaxial magnetic anisotropy of a 25 μm diameter iron wire, measured under ambient conditions with a high signal to noise ratio, was found to be in good agreement with its literature value. Further applications of the technique are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Moser, J. Guettinger, A. Eichler, M.J. Esplandiu, D.E. Liu, M.I. Dykman, A. Bachtold, Nat. Nanotechnol. 8, 493 (2013)

    Article  ADS  Google Scholar 

  2. N.V. Lavrik, P.G. Datskos, Appl. Phys. Lett. 82, 2697 (2003)

    Article  ADS  Google Scholar 

  3. F.J. Giessibl, Rev. Mod. Phys. 75, 949 (2003)

    Article  ADS  Google Scholar 

  4. M. Nordström, S. Keller, M. Lillemose, A. Johansson, S. Dohn, D. Haefliger, G. Blagoi, M. Havsteen-Jakobsen, A. Boisen, Sensors 8, 1595 (2008)

    Article  Google Scholar 

  5. C. Rossel, P. Bauer, D. Zech, J. Hofer, M. Willemin, H. Keller, J. Appl. Phys. 79, 8166 (1996)

    Article  ADS  Google Scholar 

  6. M. Willemin, C. Rossel, J. Brugger, M.H. Despont, H. Rothuizen, P. Vettiger, J. Hofer, H. Keller, J. Appl. Phys. 83, 1163 (1998)

    Article  ADS  Google Scholar 

  7. C. Rossel, M. Willemin, A. Gasser, H. Bothuizen, G.I. Meijer, H. Keller, Rev. Sci. Instrum. 69, 3199 (1998)

    Article  ADS  Google Scholar 

  8. A. Kamra, M. Schreier, H. Huebl, S.T.B. Goennenwein, Phys. Rev. B 89, 184406 (2014)

    Article  ADS  Google Scholar 

  9. B.C. Stipe, H.J. Mamin, T.D. Stowe, T.W. Kenny, D. Rugar, Phys. Rev. Lett. 86, 2874 (2001)

    Article  ADS  Google Scholar 

  10. D.P. Weber et al., Nano Lett. 12, 6139 (2012)

    Article  ADS  Google Scholar 

  11. M. Tortonese, R.C. Barrett, C.F. Quate, Appl. Phys. Lett. 62, 834 (1993)

    Article  ADS  Google Scholar 

  12. M.A. Eriksson, R.G. Beck, M. Topinka, J.A. Katine, R.M. Westervelt, K.L. Campman, A.C. Gossard, Appl. Phys. Lett. 69, 671 (1996)

    Article  ADS  Google Scholar 

  13. F.J. Giessibl, S. Hembacher, M. Herz, C. Schiller, J. Mannhart, Nanotechnology 15, S79 (2004)

    Article  ADS  Google Scholar 

  14. J. Rychen, T. Ihn, P. Studerus, A. Herrmann, K. Ensslin, Rev. Sci. Instrum. 70, 2765 (1999)

    Article  ADS  Google Scholar 

  15. M. Todorovic, S. Schultz, Appl. Phys. Lett. 73, 3595 (1998)

    Article  ADS  Google Scholar 

  16. Q.P. Unterreithmeier, E.M. Weig, J.P. Kotthaus, Nature 458, 1001 (2009)

    Article  ADS  Google Scholar 

  17. V. Bottom, Introduction to Quartz Crystal Unit Design, in Electrical-Computer Science and Engineering Series (Van Nostrand Reinhold, New York, 1982)

  18. P. Morse, K. Ingard, Theoretical Acoustics, in International series in pure and applied physics (Princeton University Press, New Jersey, 1986)

  19. J. Rychen, Ph.D. thesis, Swiss Federal Institute of Technology ETH, 2001

  20. J.M. Friedt, E. Carry, Am. J. Phys. 75, 415 (2007)

    Article  ADS  Google Scholar 

  21. A. Castellanos-Gomez, N. Agrat, G. Rubio-Bollinger, Ultramicroscopy 111, 186 (2011)

    Article  Google Scholar 

  22. B.S. Nicks, M.W. Calkins, P.A. Quintero, M.W. Meisel, Exploration of Quartz Tuning Forks as Potential Magnetometers for Nanomagnets, in APS Meeting Abstracts (2013), p. 46006

  23. S. Chikazumi, C. Graham, Physics of Ferromagnetism, in International Series of Monographs on Physics (Clarendon Press, Oxford, 1997)

  24. J. Brugger, M. Despont, C. Rossel, H. Rothuizen, P. Vettiger, M. Willemin, Sens. Actuat. A 73, 235 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Huebl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamra, A., von Hoesslin, S., Roschewsky, N. et al. An all-electrical torque differential magnetometer operating under ambient conditions. Eur. Phys. J. B 88, 224 (2015). https://doi.org/10.1140/epjb/e2015-60380-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60380-2

Keywords

Navigation