Skip to main content
Log in

Metal-ferroelectric-metal current-voltage characteristics: A charge flow balance through interfaces approach

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A model for current voltage characteristics of a thin film metal-ferroelectric-metal structure is constructed by combining the electrostatics of a polarized ferroelectric film with the balanced flow of charge through its interfaces. Using a set of fitting parameters, good agreement with several sets of experimental data is obtained for different system temperatures. The influence of model parameters on the current-voltage characteristic is discussed. Best fit values of some of these parameters correlate well with ab initio calculations in the literature, supporting the idea of low dielectric permittivity of the interface transition layers in the ferroelectric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Mead, Phys. Rev. Lett. 6, 545 (1961)

    Article  ADS  Google Scholar 

  2. C. Zhou, D.M. Newns, J. Appl. Phys. 82, 3081 (1997)

    Article  ADS  Google Scholar 

  3. J.F. Scott, Annu. Rev. Mater. Sci. 28, 79 (1998)

    Article  ADS  Google Scholar 

  4. B. Nagaraj, S. Aggarwal, T.K. Song, T. Sawhney, R. Ramesh, Phys. Rev. B 59, 16022 (1999)

    Article  ADS  Google Scholar 

  5. B. Nagaraj et al., Appl. Phys. Lett. 74, 3194 (1999)

    Article  ADS  Google Scholar 

  6. B. Nagaraj, S. Aggarwal, R. Ramesh, J. Appl. Phys. 90, 375 (2001)

    Article  ADS  Google Scholar 

  7. C.T. Black, J. Welser, Electron Devices IEEE Trans. 46, 776 (1999)

    Article  ADS  Google Scholar 

  8. J.F. Scott, Ferroelectric Memories (Springer, Berlin, New York, 2000)

  9. L.J. Sinnamon, R.M. Bowman, J.M. Gregg, Appl. Phys. Lett. 78, 1724 (2001)

    Article  ADS  Google Scholar 

  10. T.P. Juan, S. Chen, J.Y.m. Lee, J. Appl. Phys. 95, 3120 (2004)

    Article  ADS  Google Scholar 

  11. J.D. Baniecki, T. Shioga, K. Kurihara, N. Kamehara, J. Appl. Phys. 97, 114101 (2005)

    Article  ADS  Google Scholar 

  12. P. Zubko, D.J. Jung, J.F. Scott, J. Appl. Phys. 100, 114112 (2006)

    Article  ADS  Google Scholar 

  13. M.T. Chentir, E. Bouyssou, L. Ventura, C. Anceau, J. Appl. Phys. 105, 061605 (2009)

    Article  ADS  Google Scholar 

  14. L. Pintilie, I. Vrejoiu, D. Hesse, G. LeRhun, M. Alexe, Phys. Rev. B 75, 104103 (2007)

    Article  ADS  Google Scholar 

  15. L. Pintilie, V. Stancu, L. Trupina, I. Pintilie, Phys. Rev. B 82, 085319 (2010)

    Article  ADS  Google Scholar 

  16. I. Pintilie, C.M. Teodorescu, C. Ghica, C. Chirila, A.G. Boni, L. Hrib, I. Pasuk, R. Negrea, N. Apostol, L. Pintilie, ACS Appl. Mater. Interfaces 6, 2929 (2014)

    Article  Google Scholar 

  17. P. Juan, H. Chou, J. Lee, Microelectron. Reliab. 45, 1003 (2005)

    Article  Google Scholar 

  18. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

  19. R. Kretschmer, K. Binder, Phys. Rev. B 20, 1065 (1979)

    Article  ADS  Google Scholar 

  20. M. Hideharu, New J. Phys. 2, 8 (2000)

    Article  Google Scholar 

  21. J. McAneney, L.J. Sinnamon, R.M. Bowman, J.M. Gregg, J. Appl. Phys. 94, 4566 (2003)

    Article  ADS  Google Scholar 

  22. O.G. Vendik, S.P. Zubko, N.Y. Medvedeva, J. Appl. Phys. 105, 053515 (2009)

    Article  ADS  Google Scholar 

  23. V.M. Voora, T. Hofmann, M. Brandt, M. Lorenz, M. Grundmann, N. Ashkenov, H. Schmidt, N. Ianno, M. Schubert, Phys. Rev. B 81, 195307 (2010)

    Article  ADS  Google Scholar 

  24. M. Stengel, N.A. Spaldin, Nature 443, 679 (2006)

    Article  ADS  Google Scholar 

  25. L.W. Chang, M. Alexe, J.F. Scott, J.M. Gregg, Adv. Mater. 21, 4911 (2009)

    Article  Google Scholar 

  26. H. Schroeder, S. Schmitz, Appl. Phys. Lett. 83, 4381 (2003)

    Article  ADS  Google Scholar 

  27. Y. Wang, M.K. Niranjan, K. Janicka, J.P. Velev, M.Y. Zhuravlev, S.S. Jaswal, E.Y. Tsymbal, Phys. Rev. B 82, 094114 (2010)

    Article  ADS  Google Scholar 

  28. B. Chen, H. Yang, J. Miao, L. Zhao, L.X. Cao, B. Xu, X.G. Qiu, B.R. Zhao, J. Appl. Phys. 97, 024106 (2005)

    Article  ADS  Google Scholar 

  29. M.S. Majdoub, R. Maranganti, P. Sharma, Phys. Rev. B 79, 115412 (2009)

    Article  ADS  Google Scholar 

  30. C. Ge, K.J. Jin, C. Wang, H.B. Lu, C. Wang, G.Z. Yang, J. Appl. Phys. 111, 054104 (2012)

    Article  ADS  Google Scholar 

  31. C. Ge, K.J. Jin, C. Wang, H.B. Lu, C. Wang, G.Z. Yang, Appl. Phys. Lett. 99, 063509 (2011)

    Article  ADS  Google Scholar 

  32. M. Dawber, J.F. Scott, J. Phys.: Condens. Matter 16, L515 (2004)

    ADS  Google Scholar 

  33. N.G. Nilsson, Phys. Stat. Sol. A 19, K75 (1973)

    Article  ADS  Google Scholar 

  34. B.H. Bransden, C.J. Joachain, Quantum Mechanics (Prentice Hall, Harlow, New York, 2000)

  35. E.L. Murphy, R.H. Good, Phys. Rev. 102, 1464 (1956)

    Article  ADS  Google Scholar 

  36. C.S. Hwang, B.T. Lee, C.S. Kang, K.H. Lee, H.J. Cho, H. Hideki, W.D. Kim, S.I. Lee, M.Y. Lee, J. Appl. Phys. 85, 287 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucian Dragos Filip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filip, L., Pintilie, L. Metal-ferroelectric-metal current-voltage characteristics: A charge flow balance through interfaces approach. Eur. Phys. J. B 89, 44 (2016). https://doi.org/10.1140/epjb/e2016-60909-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60909-9

Keywords

Navigation