Skip to main content
Log in

Surface states and breaking down of spin-to-surface locking on a conical topological insulator quantum dot

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study a conical topological insulator quantum dot and we show how the cone tip affects the surface states energy spectrum. This is obtained by analytically solving the Dirac equation for these charge carries whose dynamics is restricted to the conical surface. Besides of changing the wave-functions and energy spectrum, the conical tip also yields breakdown of spin-to-surface locking in this geometry.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment:The data used in the graphics have been obtained by means of the software Wolfram Research, Inc. (n.d.). Mathematica, Version 12.0, by numerically solving the respective equations presented along the manuscript. The interested reader may require such data and further information by e-mailing L.G. Veiga.]

References

  1. X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057 (2011)

    Article  ADS  Google Scholar 

  2. X.-L. Qi, Z. Shou-Cheng, The quantum spin Hall effect and topological insulators. arXiv preprint arXiv:1001.1602 (2010)

  3. D.E. Gomez, M. Califano, P. Mulvaney, Optical properties of single semiconductor nanocrystals. Phys. Chem. Chem. Phys. 8(43), 4989–5011 (2006)

    Article  Google Scholar 

  4. G. Siroki et al., Protection of surface states in topological nanoparticles. Phys. Rev. Mater. 1(2), 024201 (2017)

    Article  Google Scholar 

  5. J. Linder, T. Yokoyama, A. Sudbø, Anomalous finite size effects on surface states in the topological insulator Bi 2 Se 3. Phys. Rev. B 80(20), 205401 (2009)

    Article  ADS  Google Scholar 

  6. M.S. Rider et al., A perspective on topological nanophotonics: current status and future challenges. J. Appl. Phys. 125(12), 120901 (2019)

    Article  ADS  Google Scholar 

  7. D.-H. Lee, Surface states of topological insulators: the Dirac fermion in curved two-dimensional spaces. Phys. Rev. Lett. 103(19), 196804 (2009)

    Article  ADS  Google Scholar 

  8. K.-I. Imura et al., Spherical topological insulator. Phys. Rev. B 86(23), 235119 (2012)

    Article  ADS  Google Scholar 

  9. K.-I. Imura, Y. Takane, A. Tanaka, Spin Berry phase in anisotropic topological insulators. Phys. Rev. B 84(19), 195406 (2011)

    Article  ADS  Google Scholar 

  10. A. Kundu et al., Energy spectrum and broken spin-surface locking in topological insulator quantum dots. Phys. Rev. B 83(12), 125429 (2011)

  11. L. Gioia et al., Spherical topological insulator nanoparticles: quantum size effects and optical transitions. Phys. Rev. B 100(20), 205417 (2019)

  12. J.M. Fonseca, W.A. Moura-Melo, A.R. Pereira, Geometrically induced electric polarization in conical topological insulators. J. Appl. Phys. 111(6), 064913 (2012)

    Article  ADS  Google Scholar 

  13. V.B. Bezerra, On some classical and quantum effects due to gravitational fields. Braz. J. Phys. 36(1B), 141–156 (2006)

    Article  ADS  Google Scholar 

  14. G. Felipe Azevedo et al., Electronic properties of single and double napped carbon nanocones. Eur. Phys. J. B 92(2), 1–11 (2019)

    MathSciNet  Google Scholar 

  15. P.E. Lammert, V.H. Crespi, Graphene cones: classification by fictitious flux and electronic properties. Phys. Rev. B 69(3), 035406 (2004)

    Article  ADS  Google Scholar 

  16. W.A. Moura-Melo et al., Geometrical pinning of magnetic vortices induced by a deficit angle on a surface: anisotropic spins on a conic space background. Phys. Lett. A 360(3), 472–480 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Y. Takane, K.-I. Imura, Unified description of Dirac electrons on a curved surface of topological insulators. J. Phys. Soc. Jpn. 82(7), 074712 (2013)

    Article  ADS  Google Scholar 

  18. F.T. Brandt, J.A. Sánchez-Monroy, Dirac equation on a curved surface. Phys. Lett. A 380(38), 3036–3043 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. P. de Sousa Gerbert, R. Jackiw, Classical and quantum scattering on a spinning cone. Commun. Math. Phys. 124(2), 229–260 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Z.B. Siu, S.G. Tan, M.B.A. Jalil, Effective Hamiltonian for surface states of topological insulator nanotubes. Sci. Rep. 7, 45350 (2017)

    Article  ADS  Google Scholar 

  21. S. Zhuo Bin, M. Jalil, S. Ghee Tan, Curvature induced out of plane spin accumulation. arXiv preprint arXiv:1602.05747 (2016)

  22. K. Kowalski, J. Rembieliński, On the dynamics of a particle on a cone. Ann. Phys. 329, 146–157 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

Authors thank CAPES (Financial Code 001), CNPq and FAPEMIG (Brazilian agencies) for partial financial support.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the article.

Corresponding author

Correspondence to L. G. Veiga.

Appendix A: Dirac equation on a conical TI

Appendix A: Dirac equation on a conical TI

The derivation of the surface Dirac equation for a conical TI was made following the general method developed in reference [17]. The effective surface Hamiltonian for the spinor \( {a} = \displaystyle \begin{bmatrix} a_+\\ a_- \end{bmatrix},\) is specified as

$$\begin{aligned} H_{suf}= \begin{bmatrix} \langle + | H_{\parallel }|+ \rangle &{} \langle + | H_{\parallel }|- \rangle \\ \langle - | H_{\parallel }|+ \rangle &{} \langle - | H_{\parallel }|- \rangle \end{bmatrix} . \end{aligned}$$
(A1)

The approach here is analogue to the procedure in degenerate perturbation theory, as pointed out in [13]. Here, \(H_0 = H_{\bot }\) is an unperturbed Hamiltonian and \(|\pm \rangle \) are its degenerate eigenstates. To find the spectrum of the perturbed Hamiltonian \(H_{tot} = H_0 + H'\), in which \(H'= H_{\parallel }\) and \(H_{tot}=H_{bulk}\), we have to calculate the matrix elements \(\langle \alpha | H' | \beta \rangle , \ (\alpha , \beta = \pm )\) first, and then diagonalize it. Evaluation of the matrix elements leads to

$$\begin{aligned} H_{sur}= \begin{bmatrix} 0 &{} {\mathcal {D}}_+\\ {\mathcal {D}}_- &{} 0 \end{bmatrix} , \end{aligned}$$
(A2)

where

$$\begin{aligned} {\mathcal {D}}_+= & {} \sum _{i=1}^{2} (\eta _i A - \xi _i m_2) \left( \partial _i + \frac{1}{2} [\partial _i \text {ln}(\sqrt{G}] \right) \nonumber \\{} & {} + \frac{1}{2}\partial _i (\eta _i A - \xi _i m_2) , \end{aligned}$$
(A3)
$$\begin{aligned} {\mathcal {D}}_+= & {} \sum _{i=1}^{2} -(\eta _i A - \xi _i m_2)^* \left( \partial _i + \frac{1}{2} [\partial _i \text {ln}(\sqrt{G}] \right) \nonumber \\{} & {} - \frac{1}{2}\partial _i (\eta _i A - \xi _i m_2)^* . \end{aligned}$$
(A4)

In the expressions above,

$$\begin{aligned} \eta _i= & {} \frac{\langle \sqrt{G} \varvec{\theta }^\dagger _+ \sigma ^i \varvec{\theta }_- \rangle }{\langle \sqrt{G} \rangle } , \\ \xi _i= & {} \sum _{j=1}^{2} \frac{\langle \sqrt{G} b^i_j \varvec{\theta }^\dagger _+ \sigma ^i \varvec{\theta }_- \rangle }{\langle \sqrt{G} \rangle } . \end{aligned}$$

All the averages here are taken with respect to the normal coordinate, \(\theta \). We have \( b^i_j = \partial _j (\varvec{e}_3) \cdot \varvec{e}^i\). Also, \(\varvec{\theta }_+\) and \(\varvec{\theta }_-\) are defined in equations 15 and 16. So, we can evaluate all necessary terms:

$$\begin{aligned}{} & {} b^1_1 = b^1_2 = b^2_1 = 0, \ \text {while} \ b^2_2 = \frac{\beta }{\alpha r} , \\{} & {} \varvec{\theta }^\dagger _+ \sigma ^1 \varvec{\theta }_- =-1 , \\{} & {} \varvec{\theta }^\dagger _+ \sigma ^2 \varvec{\theta }_- = \frac{i}{\alpha r} . \end{aligned}$$

Since all the averages are over the normal component, and it is reasonable to assume that the \(\theta \) coordinate will be practically constant at the surface, we can drop the averages and we get

$$\begin{aligned} \eta _1 = -1 ; \quad \eta _2 = \frac{i}{a r} ; \quad \xi _1 = 0 ; \quad \xi _2 = \frac{i \beta }{\alpha ^2r^2} . \end{aligned}$$

Substituting this quantities on the effective Dirac operator, we arrive in the conical Dirac operator for a topological insulator:

$$\begin{aligned} {\mathcal {D}}_{\pm } = \mp A \left( \frac{\partial }{\partial r} + \frac{1}{2r} \right) + \left( \frac{iA}{\alpha r} + \frac{i\beta }{\alpha ^2 r^2} m_2\right) \frac{\partial }{\partial \phi }\,. \end{aligned}$$
(A5)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veiga, L.G., Moura-Melo, W.A. Surface states and breaking down of spin-to-surface locking on a conical topological insulator quantum dot. Eur. Phys. J. B 95, 178 (2022). https://doi.org/10.1140/epjb/s10051-022-00424-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00424-8

Navigation