Skip to main content
Log in

Bose–Einstein study of position–momentum correlations of charged pions in hadronic Z0 decays

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

A study of Bose–Einstein correlations in pairs of identically charged pions produced in e+e- annihilations at the Z0 peak has been performed for the first time assuming a non-static emitting source. The results are based on the high statistics data obtained with the OPAL detector at LEP. The correlation functions have been analyzed in intervals of the average pair transverse momentum and of the pair rapidity, in order to study possible correlations between the pion production points and their momenta (position–momentum correlations). The Yano–Koonin and the Bertsch–Pratt parameterizations have been fitted to the measured correlation functions to estimate the geometrical parameters of the source as well as the velocity of the source elements with respect to the overall centre-of-mass frame. The source rapidity is found to scale approximately with the pair rapidity, and both the longitudinal and transverse source dimensions are found to decrease for increasing average pair transverse momenta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TASSO Collaboration, D. Althoff et al., Z. Phys. C 30, 355 (1986)

    Article  ADS  Google Scholar 

  2. AMY Collaboration, S.K. Choi et al., Phys. Lett. B 355, 406 (1995)

    Article  ADS  Google Scholar 

  3. OPAL Collaboration, P.D. Acton et al., Phys. Lett. B 267, 143 (1991)

    Article  ADS  Google Scholar 

  4. OPAL Collaboration, G. Alexander et al., Z. Phys. C 72, 389 (1996)

    Article  ADS  Google Scholar 

  5. L3 Collaboration, P. Achard et al., Phys. Lett. B 524, 55 (2002)

    Article  ADS  Google Scholar 

  6. OPAL Collaboration, G. Abbiendi et al., Phys. Lett. B 559, 131 (2003)

    Article  ADS  Google Scholar 

  7. OPAL Collaboration, R. Akers et al., Z. Phys. C 67, 389 (1995)

    Article  ADS  Google Scholar 

  8. DELPHI Collaboration, P. Abreu et al., Phys. Lett. B 379, 330 (1996)

    Article  ADS  Google Scholar 

  9. OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 21, 23 (2001)

    Article  ADS  Google Scholar 

  10. DELPHI Collaboration, P. Abreu et al., Phys. Lett. B 355, 415 (1995)

    Article  ADS  Google Scholar 

  11. OPAL Collaboration, K. Ackerstaff et al., Eur. Phys. J. C 5, 239 (1998)

    Article  ADS  Google Scholar 

  12. L3 Collaboration, P. Achard et al., Phys. Lett. B 540, 185 (2002)

    Article  ADS  Google Scholar 

  13. OPAL Collaboration, G. Abbiendi et al., Phys. Lett. B 523, 35 (2001)

    Article  ADS  Google Scholar 

  14. OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 16, 423 (2000)

    Article  ADS  Google Scholar 

  15. L3 Collaboration, M. Acciarri et al., Phys. Lett. B 458, 517 (1999)

    Article  ADS  Google Scholar 

  16. DELPHI Collaboration, P. Abreu et al., Phys. Lett. B 471, 460 (2000)

    Article  ADS  Google Scholar 

  17. ALEPH Collaboration, D. Abbaneo et al., Eur. Phys. J. C 36, 147 (2004)

    ADS  Google Scholar 

  18. ABCDHW Collaboration, A. Breakstone et al., Phys. Lett. B 162, 400 (1985)

    Article  ADS  Google Scholar 

  19. UA1 Collaboration, C. Albajar et al., Phys. Lett. B 226, 410 (1989)

    Article  ADS  Google Scholar 

  20. STAR Collaboration, Z. Chajecki, Nucl. Phys. A 774, 599 (2006)

    Article  ADS  Google Scholar 

  21. EHS/NA22 Collaboration, N.M. Agababyan et al., Z. Phys. C 71, 405 (1996)

    Article  ADS  Google Scholar 

  22. WA25 Collaboration, D. Allasia et al., Z. Phys. C 37, 527 (1988)

    Article  ADS  Google Scholar 

  23. H1 Collaboration, C. Adloff et al., Z. Phys. C 75, 437 (1997)

    Article  Google Scholar 

  24. ZEUS Collaboration, S. Chekanov et al., Phys. Lett. B 583, 231 (2004)

    Article  ADS  Google Scholar 

  25. E877 Collaboration, J. Barrette et al., Nucl. Phys. A 610, 227 (1996)c

    Article  ADS  Google Scholar 

  26. NA49 Collaboration, H. Appelshauser et al., Eur. Phys. J. C 2, 661 (1998)

    Article  ADS  Google Scholar 

  27. WA97 Collaboration, F. Antinori et al., J. Phys. G 27, 2325 (2001)

    Article  ADS  Google Scholar 

  28. PHOBOS Collaboration, B.B. Back et al., Phys. Rev. C 73, 031901 (2006)

    Article  ADS  Google Scholar 

  29. M.A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Ann. Rev. Nucl. Part. Sci. 55, 357 (2005)

    Article  ADS  Google Scholar 

  30. GIBS Collaboration, M.K. Anikina et al., Phys. Lett. B 397, 30 (1997)

    Article  ADS  Google Scholar 

  31. M.K. Anikina et al., Phys. Atom. Nucl. 67, 406 (2004)

    Article  ADS  Google Scholar 

  32. E-802 Collaboration, L. Ahle et al., Phys. Rev. C 66, 054906 (2002)

    Article  ADS  Google Scholar 

  33. STAR Collaboration, C. Adler et al., Phys. Rev. Lett. 87, 082301 (2001)

    Article  ADS  Google Scholar 

  34. PHENIX Collaboration, K. Adcox et al., Phys. Rev. Lett. 88, 192302 (2002)

    Article  ADS  Google Scholar 

  35. L3 Collaboration, P. Achard et al., Phys. Lett. B 547, 139 (2002)

    Article  Google Scholar 

  36. OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 36, 297 (2004)

    Article  ADS  Google Scholar 

  37. ALEPH Collaboration, D. Abbaneo et al., Phys. Lett. B 606, 265 (2005)

    Article  ADS  Google Scholar 

  38. DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C 44, 161 (2005)

    Article  ADS  Google Scholar 

  39. U. Heinz, Nucl. Phys. A 610, 264 (1996)

    Article  ADS  Google Scholar 

  40. U. Wiedemann, P. Scotto, U. Heinz, Phys. Rev. C 53, 918 (1996)

    Article  ADS  Google Scholar 

  41. B. Lörstad, O.G. Smirnova, in Proc. 7th Int. Workshop on Multiparticle Production “Correlations and Fluctuations”, ed. by R.C. Hwa et al. (World Scientific, Singapore, 1997) p. 42

  42. J.A. van Dalen, in Proc. 8th Int. Workshop on Multiparticle Production “Correlations and Fluctuations ’98: from QCD to Particle Interferometry”, ed. by T. Csörgő et al. (World Scientific, Singapore, 1999) p. 37

  43. T. Novák, T. Csörgő, W. Kittel, W.J. Metzger, Brazil. J. Phys. 37, 689 (2007)

    Google Scholar 

  44. M. G Bowler, Z. Phys. C 29, 617 (1985)

    Article  ADS  Google Scholar 

  45. B. Andersson, W. Hofmann, Phys. Lett. B 169, 364 (1986)

    Article  ADS  Google Scholar 

  46. U. Heinz, B.V. Jacak, Ann. Rev. Nucl. Part. Sci. 49, 529 (1999)

    Article  ADS  Google Scholar 

  47. K. Geiger et al., Phys. Rev. D 61, 054002 (2000)

    Article  ADS  Google Scholar 

  48. G. Alexander, Phys. Lett. B 506, 45 (2001)

    Article  ADS  Google Scholar 

  49. G. Alexander, Rep. Prog. Phys. 66, 481 (2003)

    Article  ADS  Google Scholar 

  50. T. Csörgő, J. Zimanyi, Nucl. Phys. A 517, 588 (1990)

    Article  ADS  Google Scholar 

  51. A. Białas et al., Phys. Rev. D 62, 114007 (2000)

    Article  ADS  Google Scholar 

  52. A. Białas et al., Acta Phys. Pol. B 32, 2901 (2001)

    Google Scholar 

  53. OPAL Collaboration, K. Ahmet et al., Nucl. Instrum. Methods A 305, 275 (1991)

    Article  Google Scholar 

  54. P.P. Allport et al., Nucl. Instrum. Methods A 324, 34 (1993)

    Article  ADS  Google Scholar 

  55. P.P. Allport et al., Nucl. Instrum. Methods A 346, 476 (1994)

    Article  ADS  Google Scholar 

  56. T. Csörgő, S. Pratt, Proc. Workshop on Relativistic Heavy Ion Physics at Present and Future Accelerators, ed. by T. Csörgő et al., KFKI-1991-28/A (KFKI, Budapest, 1991) p. 75.

  57. S. Chapman, P. Scotto, U. Heinz, Phys. Rev. Lett. 74, 4400 (1995)

    Article  ADS  Google Scholar 

  58. T. Sjöstrand, Comput. Phys. Commun. 39, 347 (1986)

    Article  ADS  Google Scholar 

  59. T. Sjöstrand, M. Bengtsson, Comput. Phys. Commun. 43, 367 (1987)

    Article  ADS  Google Scholar 

  60. T. Sjöstrand, M. Bengtsson, Comput. Phys. Commun. 82, 74 (1994)

    Article  ADS  Google Scholar 

  61. J. Allison et al., Nucl. Instrum. Methods A 317, 47 (1992)

    Article  ADS  Google Scholar 

  62. OPAL Collaboration, G. Alexander et al., Z. Phys. C 69, 543 (1996)

    Article  Google Scholar 

  63. S. Pratt, Phys. Rev. D 33, 1314 (1986)

    Article  ADS  Google Scholar 

  64. G. Bertsch, M. Gong, M. Tohyama, Phys. Rev. C 37, 1896 (1988)

    Article  ADS  Google Scholar 

  65. F. Yano, S. Koonin, Phys. Lett. B 78, 556 (1978)

    Article  ADS  Google Scholar 

  66. M.I. Podgoretsky, Sov. J. Nucl. Phys. 37, 272 (1983)

    Google Scholar 

  67. S. Chapman, J. Rayford Nix, U. Heinz, Phys. Rev. C 52, 2694 (1995)

    Article  ADS  Google Scholar 

  68. B. Tomášik, U. Heinz, Acta Phys. Slovaca 49, 251 (1999)

    Google Scholar 

  69. K. Morita et al., Phys. Rev. C 61, 034904 (2000)

    Article  ADS  Google Scholar 

  70. F. James, CERN Program Library Long Writeup D506, CERN, 1994

  71. H. Heiselberg, A.P. Vischer, Eur. Phys. J. C 1, 593 (1998)

    Article  ADS  Google Scholar 

  72. M. Gyulassy et al., Phys. Rev. C 20, 2267 (1979)

    Article  ADS  Google Scholar 

  73. T. Csörgő, S. Hegyi, Phys. Lett. B 489, 15 (2000)

    Article  ADS  Google Scholar 

  74. U.A. Wiedemann, U. Heinz, Phys. Rev. C 56, 3265 (1997)

    Article  ADS  Google Scholar 

  75. S. Catani et al., Phys. Lett. B 269, 432 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to D.E. Plane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbiendi, G., Ainsley, C., Åkesson, P. et al. Bose–Einstein study of position–momentum correlations of charged pions in hadronic Z0 decays. Eur. Phys. J. C 52, 787–803 (2007). https://doi.org/10.1140/epjc/s10052-007-0443-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0443-z

Keywords

Navigation