Skip to main content
Log in

Four-dimensional couplings among BF and massless Rarita–Schwinger theories: a BRST cohomological approach

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The local and manifestly covariant Lagrangian interactions in four spacetime dimensions that can be added to a free model that describes a massless Rarita–Schwinger theory and an Abelian BF theory are constructed by means of deforming the solution to the master equation using specific cohomological techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Birmingham, M. Blau, M. Rakowski, G. Thompson, Topological field theory. Phys. Rep. 209, 129–340 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  2. J.M.F. Labastida, C. Losano, Lectures on topological QFT, in Proceedings of La Plata-CERN-Santiago de Compostela Meeting on Trends in Theoretical Physics, ed. by H. Falomir, R.E. Gamboa, Saraví, F.A. Schaposnik, La Plata/Argentina, April–May 1997. AIP Conference Proceedings, vol. 419 (AIP, New York, 1998), p. 54.

    Google Scholar 

  3. P. Schaller, T. Strobl, Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 9, 3129–3136 (1994). arXiv:hep-th/9405110

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. N. Ikeda, Two-dimensional gravity and nonlinear gauge theory. Ann. Phys. 235, 435–464 (1994). arXiv:hep-th/9312059

    Article  MATH  ADS  Google Scholar 

  5. A.Yu. Alekseev, P. Schaller, T. Strobl, Topological G/G WZW model in the generalized momentum representation. Phys. Rev. D 52, 7146–7160 (1995). arXiv:hep-th/9505012

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions: I. A unifying approach. Class. Quantum Gravity 13, 965–983 (1996). arXiv:gr-qc/9508020; Erratum-ibid. 14, 825 (1997)

    Article  MATH  ADS  Google Scholar 

  7. T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions. II: The universal coverings. Class. Quantum Gravity 13, 2395–2421 (1996). arXiv:gr-qc/9511081

    Article  MATH  ADS  Google Scholar 

  8. T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions: III. Solutions of arbitrary topology. Class. Quantum Gravity 14, 1689–1723 (1997). arXiv:hep-th/9607226

    Article  MATH  ADS  Google Scholar 

  9. A.S. Cattaneo, G. Felder, A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212, 591–611 (2000). arXiv:math/9902090

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. A.S. Cattaneo, G. Felder, Poisson sigma models and deformation quantization. Mod. Phys. Lett. A 16, 179–189 (2001). arXiv:hep-th/0102208

    Article  ADS  MathSciNet  Google Scholar 

  11. C. Teitelboim, Gravitation and Hamiltonian structure in two spacetime dimensions. Phys. Lett. B 126, 41–45 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Jackiw, Lower dimensional gravity. Nucl. Phys. B 252, 343–356 (1985)

    Article  ADS  Google Scholar 

  13. M.O. Katanayev, I.V. Volovich, String model with dynamical geometry and torsion. Phys. Lett. B 175, 413–416 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Brown, Lower Dimensional Gravity (World Scientific, Singapore, 1988)

    Google Scholar 

  15. M.O. Katanaev, I.V. Volovich, Two-dimensional gravity with dynamical torsion and strings. Ann. Phys. 197, 1–32 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. H.-J. Schmidt, Scale-invariant gravity in two dimensions. J. Math. Phys. 32, 1562 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. S.N. Solodukhin, Topological 2D Riemann–Cartan–Weyl gravity. Class. Quantum Gravity 10, 1011–1021 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  18. N. Ikeda, K.I. Izawa, General form of dilaton gravity and nonlinear gauge theory. Prog. Theor. Phys. 90, 237–246 (1993). arXiv:hep-th/9304012

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Strobl, Dirac quantization of gravity-Yang-Mills systems in 1+1 dimensions. Phys. Rev. D 50, 7346–7350 (1994). arXiv:hep-th/9403121

    Article  ADS  MathSciNet  Google Scholar 

  20. D. Grumiller, W. Kummer, D.V. Vassilevich, Dilaton gravity in two dimensions. Phys. Rep. 369, 327–430 (2002). arXiv:hep-th/0204253

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. T. Strobl, Gravity in two space-time dimensions. Habilitation thesis RWTH Aachen, May 1999, arXiv:hep-th/0011240

  22. K. Ezawa, Ashtekar’s formulation for N=1,2 supergravities as “constrained” BF theories. Prog. Theor. Phys. 95, 863–882 (1996). arXiv:hep-th/9511047

    Article  ADS  MathSciNet  Google Scholar 

  23. L. Freidel, K. Krasnov, R. Puzio, BF description of higher-dimensional gravity theories. Adv. Theor. Math. Phys. 3, 1289–1324 (1999). arXiv:hep-th/9901069

    MATH  MathSciNet  Google Scholar 

  24. L. Smolin, Holographic formulation of quantum general relativity. Phys. Rev. D 61, 084007 (2000). arXiv:hep-th/9808191

    Article  ADS  MathSciNet  Google Scholar 

  25. Y. Ling, L. Smolin, Holographic formulation of quantum supergravity. Phys. Rev. D 63, 064010 (2001). arXiv:hep-th/0009018

    Article  ADS  MathSciNet  Google Scholar 

  26. K.-I. Izawa, On nonlinear gauge theory from a deformation theory perspective. Prog. Theor. Phys. 103, 225–228 (2000). arXiv:hep-th/9910133

    Article  ADS  MathSciNet  Google Scholar 

  27. C. Bizdadea, Note on two-dimensional nonlinear gauge theories. Mod. Phys. Lett. A 15, 2047–2055 (2000). arXiv:hep-th/0201059

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. N. Ikeda, A deformation of three dimensional BF theory. J. High Energy Phys. 11, 009 (2000). arXiv:hep-th/0010096

    Article  ADS  Google Scholar 

  29. N. Ikeda, Deformation of BF theories, topological open membrane and a generalization of the star deformation. J. High Energy Phys. 07, 037 (2001). arXiv:hep-th/0105286

    Article  ADS  Google Scholar 

  30. C. Bizdadea, E.M. Cioroianu, S.O. Saliu, Hamiltonian cohomological derivation of four-dimensional nonlinear gauge theories. Int. J. Mod. Phys. A 17, 2191–2210 (2002). arXiv:hep-th/0206186

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, Hamiltonian BRST deformation of a class of n-dimensional BF-type theories. J. High Energy Phys. 01, 049 (2003). arXiv:hep-th/0302037

    Article  ADS  Google Scholar 

  32. E.M. Cioroianu, S.C. Săraru, PT-symmetry breaking Hamiltonian interactions in BF models. Int. J. Mod. Phys. A 21, 2573–2599 (2006). arXiv:hep-th/0606164

    Article  MATH  ADS  Google Scholar 

  33. C. Bizdadea, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, Couplings of a collection of BF models to matter theories. Eur. Phys. J. C 41, 401–420 (2005). arXiv:hep-th/0508037

    Article  ADS  Google Scholar 

  34. N. Ikeda, Chern–Simons gauge theory coupled with BF theory. Int. J. Mod. Phys. A 18, 2689–2702 (2003). arXiv:hep-th/0203043

    Article  MATH  ADS  Google Scholar 

  35. E.M. Cioroianu, S.C. Săraru, Two-dimensional interactions between a BF-type theory and a collection of vector fields. Int. J. Mod. Phys. A 19, 4101–4125 (2004). arXiv:hep-th/0501056

    Article  MATH  ADS  Google Scholar 

  36. C. Bizdadea, E.M. Cioroianu, I. Negru, S.O. Saliu, S.C. Săraru, On the generalized Freedman–Townsend model. J. High Energy Phys. 10, 004 (2006). arXiv:0704.3407

    Article  ADS  Google Scholar 

  37. G. Barnich, M. Henneaux, Consistent couplings between fields with a gauge freedom and deformations of the master equation. Phys. Lett. B 311, 123–129 (1993). arXiv:hep-th/9304057

    Article  ADS  MathSciNet  Google Scholar 

  38. C. Bizdadea, Consistent interactions in the Hamiltonian BRST formalism. Acta Phys. Pol. B 32, 2843–2862 (2001). arXiv:hep-th/0003199

    MathSciNet  Google Scholar 

  39. N. Ikeda, Topological field theories and geometry of Batalin–Vilkovisky algebras. J. High Energy Phys. 10, 076 (2002). arXiv:hep-th/0209042

    Article  ADS  Google Scholar 

  40. N. Ikeda, K.-I. Izawa, Dimensional reduction of nonlinear gauge theories. J. High Energy Phys. 09, 030 (2004). arXiv:hep-th/0407243

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Henneaux, Consistent interactions between gauge fields: the cohomological approach. Contemp. Math. 219, 93 (1998). arXiv:hep-th/9712226

    MathSciNet  Google Scholar 

  42. G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the antifield formalism: I. General theorems. Commun. Math. Phys. 174, 57–91 (1995). arXiv:hep-th/9405109

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in gauge theories. Phys. Rep. 338, 439–569 (2000). arXiv:hep-th/0002245

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. E.S. Fradkin, A.A. Tseytlin, Conformal supergravity. Phys. Rep. 119, 233–362 (1985)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Saliu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bizdadea, C., Cioroianu, E.M., Saliu, S.O. et al. Four-dimensional couplings among BF and massless Rarita–Schwinger theories: a BRST cohomological approach. Eur. Phys. J. C 58, 123–149 (2008). https://doi.org/10.1140/epjc/s10052-008-0720-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0720-5

PACS

Navigation