Skip to main content

Advertisement

Log in

Consistent interactions of dual linearized gravity in D=5: couplings with a topological BF model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Under some plausible assumptions, we find that the dual formulation of linearized gravity in D=5 can be nontrivially coupled to the topological BF model in such a way that the interacting theory exhibits a deformed gauge algebra and some deformed, on-shell reducibility relations. Moreover, the tensor field with the mixed symmetry (2,1) gains some shift gauge transformations with parameters from the BF sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Birmingham, M. Blau, M. Rakowski, G. Thompson, Topological field theory. Phys. Rep. 209, 129–340 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  2. J.M.F. Labastida, C. Lozano, Lectures on topological quantum field theory, in Proceedings of La Plata-CERN-Santiago de Compostela Meeting on Trends in Theoretical Physics, La Plata, Argentina, April–May 1997, ed. by H. Falomir, R.E. Gamboa Saraví, F.A. Schaposnik. AIP Conference Proceedings, vol. 419 (AIP, New York, 1998), pp. 54–93. arXiv:hep-th/9709192

    Google Scholar 

  3. P. Schaller, T. Strobl, Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 9, 3129–3136 (1994). arXiv:hep-th/9405110

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. N. Ikeda, Two-dimensional gravity and nonlinear gauge theory. Ann. Phys. 235, 435–464 (1994). arXiv:hep-th/9312059

    Article  MATH  ADS  Google Scholar 

  5. A.Yu. Alekseev, P. Schaller, T. Strobl, Topological G/G WZW model in the generalized momentum representation. Phys. Rev. D 52, 7146–7160 (1995). arXiv:hep-th/9505012

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions: I. A unifying approach. Class. Quantum Gravity 13, 965–983 (1996). arXiv:gr-qc/9508020; Erratum-ibid. 14, 825 (1997)

    Article  MATH  ADS  Google Scholar 

  7. T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions. II: The universal coverings. Class. Quantum Gravity 13, 2395–2421 (1996). arXiv:gr-qc/9511081

    Article  MATH  ADS  Google Scholar 

  8. T. Klösch, T. Strobl, Classical and quantum gravity in 1+1 dimensions: III. Solutions of arbitrary topology. Class. Quantum Gravity 14, 1689–1723 (1997). arXiv:hep-th/9607226

    Article  MATH  ADS  Google Scholar 

  9. A.S. Cattaneo, G. Felder, A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212, 591–611 (2000). arXiv:math/9902090

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. A.S. Cattaneo, G. Felder, Poisson sigma models and deformation quantization. Mod. Phys. Lett. A 16, 179–189 (2001). arXiv:hep-th/0102208

    Article  ADS  MathSciNet  Google Scholar 

  11. C. Teitelboim, Gravitation and Hamiltonian structure in two spacetime dimensions. Phys. Lett. B 126, 41–45 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Jackiw, Lower dimensional gravity. Nucl. Phys. B 252, 343–356 (1985)

    Article  ADS  Google Scholar 

  13. M.O. Katanayev, I.V. Volovich, String model with dynamical geometry and torsion. Phys. Lett. B 175, 413–416 (1986). arXiv:hep-th/0209014

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Brown, Lower Dimensional Gravity (World Scientific, Singapore 1988)

    Google Scholar 

  15. M.O. Katanaev, I.V. Volovich, Two-dimensional gravity with dynamical torsion and strings. Ann. Phys. 197, 1–32 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. H.-J. Schmidt, Scale-invariant gravity in two dimensions. J. Math. Phys. 32, 1562–1566 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. S.N. Solodukhin, Topological 2D Riemann–Cartan–Weyl gravity. Class. Quantum Gravity 10, 1011–1021 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  18. N. Ikeda, K.I. Izawa, General form of dilaton gravity and nonlinear gauge theory. Prog. Theor. Phys. 90, 237–245 (1993). arXiv:hep-th/9304012

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Strobl, Dirac quantization of gravity-Yang-Mills systems in 1+1 dimensions. Phys. Rev. D 50, 7346–7350 (1994). arXiv:hep-th/9403121

    Article  ADS  MathSciNet  Google Scholar 

  20. D. Grumiller, W. Kummer, D.V. Vassilevich, Dilaton gravity in two dimensions. Phys. Rep. 369, 327–430 (2002). arXiv:hep-th/0204253

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. T. Strobl, Gravity in two space-time dimensions. Habilitation thesis RWTH Aachen, May 1999. arXiv:hep-th/0011240

  22. K. Ezawa, Ashtekar’s formulation for N=1, 2 supergravities as “constrained” BF theories. Prog. Theor. Phys. 95, 863–882 (1996). arXiv:hep-th/9511047

    Article  ADS  MathSciNet  Google Scholar 

  23. L. Freidel, K. Krasnov, R. Puzio, BF description of higher-dimensional gravity theories. Adv. Theor. Math. Phys. 3, 1289–1324 (1999). arXiv:hep-th/9901069

    MATH  MathSciNet  Google Scholar 

  24. L. Smolin, Holographic formulation of quantum general relativity. Phys. Rev. D 61, 084007 (2000). arXiv:hep-th/9808191

    Article  ADS  MathSciNet  Google Scholar 

  25. Y. Ling, L. Smolin, Holographic formulation of quantum supergravity. Phys. Rev. D 63, 064010 (2001). arXiv:hep-th/0009018

    Article  ADS  MathSciNet  Google Scholar 

  26. K.-I. Izawa, On nonlinear gauge theory from a deformation theory perspective. Prog. Theor. Phys. 103, 225–228 (2000). arXiv:hep-th/9910133

    Article  ADS  MathSciNet  Google Scholar 

  27. C. Bizdadea, Note on two-dimensional nonlinear gauge theories. Mod. Phys. Lett. A 15, 2047–2055 (2000). arXiv:hep-th/0201059

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. N. Ikeda, A deformation of three dimensional BF theory. J. High Energy Phys. 11, 009 (2000). arXiv:hep-th/0010096

    Article  ADS  Google Scholar 

  29. N. Ikeda, Deformation of BF theories, topological open membrane and a generalization of the star deformation. J. High Energy Phys. 07, 037 (2001). arXiv:hep-th/0105286

    Article  ADS  Google Scholar 

  30. C. Bizdadea, E.M. Cioroianu, S.O. Saliu, Hamiltonian cohomological derivation of four-dimensional nonlinear gauge theories. Int. J. Mod. Phys. A 17, 2191–2210 (2002). arXiv:hep-th/0206186

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, Hamiltonian BRST deformation of a class of n-dimensional BF-type theories. J. High Energy Phys. 01, 049 (2003). arXiv:hep-th/0302037

    Article  ADS  Google Scholar 

  32. E.M. Cioroianu, S.C. Săraru, Self-interactions in a topological BF-type model in D=5. J. High Energy Phys. 07, 056 (2005). arXiv:hep-th/0508035

    Article  ADS  Google Scholar 

  33. E.M. Cioroianu, S.C. Săraru, PT-symmetry breaking Hamiltonian interactions in BF models. Int. J. Mod. Phys. A 21, 2573–2599 (2006). arXiv:hep-th/0606164

    Article  MATH  ADS  Google Scholar 

  34. N. Ikeda, Chern–Simons gauge theory coupled with BF theory. Int. J. Mod. Phys. A 18, 2689–2702 (2003). arXiv:hep-th/0203043

    Article  MATH  ADS  Google Scholar 

  35. E.M. Cioroianu, S.C. Săraru, Two-dimensional interactions between a BF-type theory and a collection of vector fields. Int. J. Mod. Phys. A 19, 4101–4125 (2004). arXiv:hep-th/0501056

    Article  MATH  ADS  Google Scholar 

  36. C. Bizdadea, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, Couplings of a collection of BF models to matter theories. Eur. Phys. J. C 41, 401–420 (2005). arXiv:hep-th/0508037

    Article  ADS  Google Scholar 

  37. C. Bizdadea, E.M. Cioroianu, I. Negru, S.O. Saliu, S.C. Săraru, On the generalized Freedman-Townsend model. J. High Energy Phys. 10, 004 (2006). arXiv:0704.3407 [hep-th]

    Article  ADS  Google Scholar 

  38. C. Bizdadea, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, M. Iordache, Four-dimensional couplings among BF and massless Rarita–Schwinger theories: a BRST cohomological approach. Eur. Phys. J. C 58, 123–149 (2008). arXiv:0812.3810 [hep-th]

    Article  ADS  Google Scholar 

  39. G. Barnich, M. Henneaux, Consistent couplings between fields with a gauge freedom and deformations of the master equation. Phys. Lett. B 311, 123–129 (1993). arXiv:hep-th/9304057

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Henneaux, Consistent interactions between gauge fields: the cohomological approach. Contemp. Math. 219, 93 (1998). arXiv:hep-th/9712226

    MathSciNet  Google Scholar 

  41. C. Bizdadea, Consistent interactions in the Hamiltonian BRST formalism. Acta Phys. Pol. B 32, 2843–2862 (2001). arXiv:hep-th/0003199

    MathSciNet  Google Scholar 

  42. G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the antifield formalism: I. General theorems. Commun. Math. Phys. 174, 57–91 (1995). arXiv:hep-th/9405109

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the antifield formalism: II. Application to Yang-Mills theory. Commun. Math. Phys. 174, 93–116 (1995). arXiv:hep-th/9405194

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in gauge theories. Phys. Rep. 338, 439–569 (2000). arXiv:hep-th/0002245

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. N. Ikeda, Topological field theories and geometry of Batalin-Vilkovisky algebras. J. High Energy Phys. 10, 076 (2002). arXiv:hep-th/0209042

    Article  ADS  Google Scholar 

  46. N. Ikeda, K.-I. Izawa, Dimensional reduction of nonlinear gauge theories J. High Energy Phys. 09, 030 (2004). arXiv:hep-th/0407243

    Article  ADS  MathSciNet  Google Scholar 

  47. T. Curtright, P.G.O. Freund, Massive dual fields. Nucl. Phys. B 172, 413–424 (1980)

    Article  ADS  Google Scholar 

  48. T. Curtright, Generalized gauge fields. Phys. Lett. B 165, 304–308 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  49. C.S. Aulakh, I.G. Koh, S. Ouvry, Higher spin fields with mixed symmetry. Phys. Lett. B 173, 284–288 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  50. J.M. Labastida, T.R. Morris, Massless mixed-symmetry bosonic free fields. Phys. Lett. B 180, 101–106 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  51. J.M. Labastida, Massless particles in arbitrary representations of the Lorentz group. Nucl. Phys. B 322, 185–209 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  52. C. Burdik, A. Pashnev, M. Tsulaia, On the mixed symmetry irreducible representations of the Poincaré group in the BRST approach. Mod. Phys. Lett. A 16, 731–746 (2001). arXiv:hep-th/0101201

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. Yu.M. Zinoviev, On massive mixed symmetry tensor fields in Minkowski space and (A)dS. arXiv:hep-th/0211233

  54. C.M. Hull, Duality in gravity and higher spin gauge fields. J. High Energy Phys. 09, 027 (2001). arXiv:hep-th/0107149

    Article  ADS  MathSciNet  Google Scholar 

  55. X. Bekaert, N. Boulanger, Massless spin-two field S-duality. Class. Quantum Gravity 20, S417–S423 (2003). arXiv:hep-th/0212131

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. X. Bekaert, N. Boulanger, On geometric equations and duality for free higher spins. Phys. Lett. B 561, 183–190 (2003). arXiv:hep-th/0301243

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. H. Casini, R. Montemayor, L.F. Urrutia, Duality for symmetric second rank tensors. II. The linearized gravitational field. Phys. Rev. D 68, 065011 (2003). arXiv:hep-th/0304228

    Article  ADS  MathSciNet  Google Scholar 

  58. N. Boulanger, S. Cnockaert, M. Henneaux, A note on spin-s duality. J. High Energy Phys. 06, 060 (2003). arXiv:hep-th/0306023

    Article  ADS  MathSciNet  Google Scholar 

  59. P. de Medeiros, C. Hull, Exotic tensor gauge theory and duality. Commun. Math. Phys. 235, 255–273 (2003). arXiv:hep-th/0208155

    Article  MATH  ADS  Google Scholar 

  60. X. Bekaert, N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D,ℝ). Duality and Poincaré Lemma. Commun. Math. Phys. 245, 27–67 (2004). arXiv:hep-th/0208058

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. X. Bekaert, N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D,ℝ): II. Quadratic actions. Commun. Math. Phys. 271, 723–773 (2007). arXiv:hep-th/0606198

    Article  MATH  ADS  MathSciNet  Google Scholar 

  62. X. Bekaert, N. Boulanger, M. Henneaux, Consistent deformations of dual formulations of linearized gravity: A no-go result. Phys. Rev. D 67, 044010 (2003). arXiv:hep-th/0210278

    Article  ADS  MathSciNet  Google Scholar 

  63. Yu.M. Zinoviev, First order formalism for mixed symmetry tensor fields. arXiv:hep-th/0304067

  64. Yu.M. Zinoviev, First order formalism for massive mixed symmetry tensor fields in Minkowski and (A)dS spaces. arXiv:hep-th/0306292

  65. N. Boulanger, L. Gualtieri, An exotic theory of massless spin-2 fields in three dimensions. Class. Quantum Gravity 18, 1485–1502 (2001). arXiv:hep-th/0012003

    Article  MATH  ADS  MathSciNet  Google Scholar 

  66. S.C. Anco, Parity violating spin-two gauge theories. Phys. Rev. D 67, 124007 (2003). arXiv:gr-qc/0305026

    Article  ADS  MathSciNet  Google Scholar 

  67. A.K. Bengtsson, I. Bengtsson, L. Brink, Cubic interaction terms for arbitrary spin. Nucl. Phys. B 227, 31–40 (1983)

    Article  ADS  Google Scholar 

  68. M.A. Vasiliev, Cubic interactions of bosonic higher spin gauge fields in AdS 5. Nucl. Phys. B 616, 106–162 (2001). arXiv:hep-th/0106200; Erratum-ibid. B 652, 407 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  69. E. Sezgin, P. Sundell, 7D bosonic higher spin gauge theory: symmetry algebra and linearized constraints. Nucl. Phys. B 634, 120–140 (2002). arXiv:hep-th/0112100

    Article  MATH  ADS  MathSciNet  Google Scholar 

  70. D. Francia, A. Sagnotti, Free geometric equations for higher spins. Phys. Lett. B 543, 303–310 (2002). arXiv:hep-th/0207002

    Article  MATH  ADS  MathSciNet  Google Scholar 

  71. C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, I. Negru, S.O. Saliu, S.C. Săraru, Interactions of a single massless tensor field with the mixed symmetry (3,1). No-go results. J. High Energy Phys. 10, 019 (2003)

    Article  ADS  Google Scholar 

  72. N. Boulanger, S. Cnockaert, Consistent deformations of [p,p]-type gauge field theories. J. High Energy Phys. 03, 031 (2004). arXiv:hep-th/0402180

    Article  ADS  MathSciNet  Google Scholar 

  73. C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, Cohomological BRST aspects of the massless tensor field with the mixed symmetry (k,k). Int. J. Mod. Phys. A 19, 4579–4619 (2004). arXiv:hep-th/0403017

    Article  MATH  ADS  Google Scholar 

  74. C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, S.C. Săraru, Interactions of a massless tensor field with the mixed symmetry of the Riemann tensor. No-go results. Eur. Phys. J. C 36, 253–270 (2004). arXiv:hep-th/0306154

    Article  ADS  Google Scholar 

  75. X. Bekaert, N. Boulanger, S. Cnockaert, No self-interaction for two-column massless fields. J. Math. Phys. 46, 012303 (2005). arXiv:hep-th/0407102

    Article  ADS  MathSciNet  Google Scholar 

  76. N. Boulanger, S. Leclercq, S. Cnockaert, Parity-violating vertices for spin-3 gauge fields. Phys. Rev. D 73, 065019 (2006). arXiv:hep-th/0509118

    Article  ADS  MathSciNet  Google Scholar 

  77. X. Bekaert, N. Boulanger, S. Cnockaert, Spin three gauge theory revisited. J. High Energy Phys. 01, 052 (2006). arXiv:hep-th/0508048

    Article  ADS  MathSciNet  Google Scholar 

  78. C. Bizdadea, C.C. Ciobîrcă, I. Negru, S.O. Saliu, Couplings between a single massless tensor field with the mixed symmetry (3,1) and one vector field. Phys.Rev. D 74, 045031 (2006). arXiv:0705.1048 [hep-th]

    Article  ADS  Google Scholar 

  79. C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, Interactions between a massless tensor field with the mixed symmetry of the Riemann tensor and a massless vector field. J. Phys. A: Math. Gen. 39, 10549–10564 (2006). arXiv:0705.1054 [hep-th]

    Article  MATH  ADS  Google Scholar 

  80. C. Bizdadea, D. Cornea, S.O. Saliu, No cross-interactions among different tensor fields with the mixed symmetry (3, 1) intermediated by a vector field. J. Phys. A: Math. Theor. 41, 285202 (2008). arXiv:0901.4059 [hep-th]

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Saliu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bizdadea, C., Cioroianu, E.M., Danehkar, A. et al. Consistent interactions of dual linearized gravity in D=5: couplings with a topological BF model. Eur. Phys. J. C 63, 491–519 (2009). https://doi.org/10.1140/epjc/s10052-009-1105-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-1105-0

PACS

Navigation