Skip to main content

Advertisement

Log in

Quark mixing, CKM unitarity

The unitarity problem

  • experimental physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

In the Standard Model of elementary particles, quark-mixing is expressed in terms of a 3 x 3 unitary matrix V, the so called Cabibbo-Kobayashi-Maskawa (CKM) matrix. Significant unitarity checks are so far possible for the first row of this matrix. This article reviews the experimental and theoretical information on these matrix elements. On the experimental side, we find a 2.2 \(\sigma\) to 2.7 \(\sigma\) deviation from unitarity, which conflicts with the Standard Model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I.S. Towner and J.C. Hardy, J. Phys. G: Nucl. Part. Phys. 29, 197 (2003)

    Article  Google Scholar 

  2. H. Abele, Phys. Rev. Lett. 88, 211801 (2002)

    Article  Google Scholar 

  3. K. Hagiwara, Phys. Rev. D 66, 010001 (2002)

    Article  Google Scholar 

  4. H. Abele and D. Mund (eds.), workshop proceedings of Quark-Mixing, CKM-Unitarity, Heidelberg, Sep. 2002 (Mattes-Verlag, Heidelberg, 2003)

  5. M. Battaglia, A.J. Buras, P. Gambino, and A. Stocchi (eds.), Proceedings of the First Workshop on the CKM Unitarity Triangle, CERN, Feb 2002, arXiv:hep-ph/0304132

  6. P. Ball, J.M. Flynn, P. Kluit, and A. Stocchi (eds.), Proceedings of the 2nd Workshop on the CKM Unitarity Triangle, IPPP Durham, April 2003 (Electronic Proceedings Archive eConf C0304052, 2003)

    Google Scholar 

  7. D. Pocanic, PIBETA: a precise measurement of the pion \(\beta\)-decay rate to determine V ud , [4]

  8. W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 56, 22 (1986)

    Article  Google Scholar 

  9. P. Langacker and D. London, Phys. Rev. D 38, 886 (1988)

    Article  Google Scholar 

  10. J. Maalampi and M. Roos, Phys. Rep. 186, 53 (1990)

    Article  Google Scholar 

  11. P. Langacker and M. Luo, Phys. Rev. D 45, 278 (1992)

    Article  Google Scholar 

  12. W.J. Marciano and A. Sirlin, Phys. Rev. D 35, 1672 (1987)

    Article  Google Scholar 

  13. J. Deutsch, in: Workshop on the breaking of fundamental symmetries in nuclei, Santa Fe, 1988, B.R. Holstein and S.B. Treiman, Phys. Rev. D 16, 2369 (1977)

    Article  Google Scholar 

  14. Y. Liao and X. Li, Phys. Lett. B 503, 301 (2001)

    Article  Google Scholar 

  15. I.S. Towner and J.C. Hardy, Proc. of the V Int. WEIN Symposium: Physics Beyond the Standard Model, Santa Fe, NM, June 1998, edited by P. Herczeg, C.M. Hoffman, and H.V. Klapdor-Kleingrothaus (World Scientific, Singapore, 1999), pp. 338-359

  16. I.S. Towner and J.C. Hardy, Phys. Rev. C 66, 035501 (2002).

    Article  Google Scholar 

  17. J.C. Hardy, I.S. Towner, V.T. Koslowsky, E. Hagberg, and H. Schmeing, Nucl. Phys A 509, 429 (1990)

    Article  Google Scholar 

  18. J.C. Hardy and I.S. Towner, Phys. Rev. Lett. 88, 252501 (2002)

    Article  Google Scholar 

  19. A. Piechaczek, Phys. Rev. C 67, 051305(R) (2003)

    Article  Google Scholar 

  20. J.C. Hardy, Phys. Rev. Lett. 91, 082501 (2003)

    Article  Google Scholar 

  21. P. Bopp, Phys. Rev. Lett. 56, 919 (1988)

    Article  Google Scholar 

  22. B.G. Yerozolimsky Phys. Lett. B 412, 240 (1997), B.G. Erozolimskii, Phys. Lett. B 263, 33 (1991)

    Google Scholar 

  23. K. Schreckenbach, Phys. Lett. B 349, 427 (1995), P. Liaud, Nucl. Phys. A 612, 53 (1997)

    Article  Google Scholar 

  24. D.H. Wilkinson, Nucl. Phys. A 377, 474 (1982)

    Article  Google Scholar 

  25. A. Czarnecki, W. Marciano, and A. Sirlin, preprint in preparation.

  26. I.S. Towner, Nucl. Phys. A 540, 478 (1992)

    Article  Google Scholar 

  27. H. Abele, Phys. Lett. B 407, 212 (1997)

    Article  Google Scholar 

  28. S. Arzumanov, Phys. Lett. B 483, 15 (2000)

    Article  Google Scholar 

  29. H. Haese, Nucl. Instrum. Methods Phys. Res. A 485, 453 (2002)

    Google Scholar 

  30. T. Soldner, Recent progress in neutron polarization and its analysis, [4]

  31. W. Heil, Physica B 241, 56 (1998)

    Google Scholar 

  32. O. Zimmer, Nucl. Instr. & Meth. A 440, 764 (2000)

    Google Scholar 

  33. A. Fomin, in: Proceedings of the workshop Ultracold and Cold Neutrons, Physics and Sources, St. Petersburg, June 2003

  34. V.F. Ezhov, in: Proceedings of the workshop Ultracold and Cold Neutrons, Physics and Sources, St. Petersburg, June 2003

  35. F.J. Hartmann, A magnetic storage device, [4]

  36. P.R. Huffman, Progress Towards Measurement of the Neutron Lifetime Using Magnetically Trapped Ultracold Neutrons, [4]

  37. F. Glück and I. Joó, Phys. Lett. B 340, 240 (1994), F. Glück, Nucl. Phys. A 628, 493 (1998)

    Article  Google Scholar 

  38. F. Glück, Phys. Lett. B 436, 25 (1998)

    Article  Google Scholar 

  39. F. Glück and I. Joó, Comp. Phys. Comm. 107, 92 (1997), F. Glück, Comp. Phys. Comm. 101, 223 (1997)

    Article  Google Scholar 

  40. A. Sirlin, Phys. Rev. 164, 1767 (1967)

    Article  Google Scholar 

  41. F. Glück, I. Joó, and J. Last, Nucl. Phys. A 593, 125 (1995)

    Article  Google Scholar 

  42. R.T. Shann, Nuovo Cimento 5A, 591 (1971)

    Google Scholar 

  43. F. Glück and K. Tóth, Phys. Rev. D 46, 2090 (1992)

    Article  Google Scholar 

  44. F. Glück, Phys. Lett. B 376, 25 (1996)

    Article  Google Scholar 

  45. F. Glück, Phys. Rev. D 47, 2840 (1993)

    Article  Google Scholar 

  46. I. Towner and J. Hardy, Phys. Rev. C 66, 035501 (2002)

    Article  Google Scholar 

  47. W. Jaus and G. Rasche, Nucl. Phys. A 143, 202 (1970), Phys. Rev. D 35, 3420 (1987), A. Sirlin and R. Zucchini, Phys. Rev. Lett. 57, 1994 (1986), A. Sirlin, Phys. Rev. D 35, 3423 (1987)

    Article  Google Scholar 

  48. A. Sirlin, Nucl. Phys. B 71, 29 (1974), Rev. Mod. Phys. 50, 573 (1978)

    Article  Google Scholar 

  49. A. Sirlin, in: Precision Tests of the Standard Electroweak Model, edited by P. Langacker, World Scientific Advanced Series on Directions in High Energy Physics - Vol 14. (1995), p. 776

  50. H. Leutwyler, Z. Phys. C 25, 91 (1984).

    Google Scholar 

  51. M. Bargiotti, Riv. Nuovo Cimento 23, 1 (2000)

    Google Scholar 

  52. W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 56, 22 (1986)

    Article  Google Scholar 

  53. H.H. Williams, Phys. Rev. Lett. 33, 240 (1974), T. Becherrawy, Phys. Rev. D 1, 1452 (1970)

    Article  Google Scholar 

  54. V. Cirigliano, Eur. Phys. J. C 23, 121 (2002), A. Bytev, Eur. Phys. J. C 27, 57 (2003), G. Calderon and G. Lopez Castro, Phys. Rev. D 65, 073032 (2002), J. Bijnens and T. Talavera, arXiv:hep-ph/0303103

    Google Scholar 

  55. A. Sher, arXiv:hep-ex/0305042, J. Thompson et al., Proceedings of the 2nd Workshop on the CKM Unitarity Triangle, IPPP Durham, April 2003, arXiv:hep-ph/0307053

  56. N. Cabibbo, E. Swallow, and R. Winston, arXiv:hep-ph/0307214

  57. http://lepewwg.web.cern.ch/LEPEWWG/lepww/4f/ and references therein

  58. W. Beenakker, WW Cross-Sections and Distributions, in: Physics at LEP2, edited by G. Altarelli, CERN 96-01

  59. J. Letts and P. Mattig, Eur. Phys. J. C 21, 211 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Received: 25 October 2003, Published online: 29 January 2004

F. Glück: Present address: Johannes Gutenberg University Mainz, Inst. Physics, WA EXAKT, 55099 Mainz, Germany

A. Serebrov: Also: Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abele, H., Barberio, E., Dubbers, D. et al. Quark mixing, CKM unitarity. Eur. Phys. J. C 33, 1–8 (2004). https://doi.org/10.1140/epjc/s2003-01574-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2003-01574-8

Keywords

Navigation