Skip to main content

Advertisement

Log in

Measurement of event shape distributions and moments in e + e \(^-\rightarrow \mathrm{hadrons}\) at 91-209 GeV and a determination of \(\ensuremath{\alpha_{\mathrm{s}}}\)

  • experimental physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

We have studied hadronic events from e + e- annihilation data at centre-of-mass energies from 91 to 209 GeV. We present distributions of event shape observables and their moments at each energy and compare with QCD Monte Carlo models. From the event shape distributions we extract the strong coupling \(\ensuremath{\alpha_{\mathrm{s}}}\) and test its evolution with energy scale. The results are consistent with the running of \(\ensuremath{\alpha_{\mathrm{s}}}\) expected from QCD. Combining all data, the value of \(\ensuremath{\alpha_{\mathrm{s}}} \ensuremath{(M_{\mathrm{Z}})}\) is determined to be \( \ensuremath{\alpha_{\mathrm{s}}}\ensuremath{M_{\mathrm{Z}}} = 0.1191 \pm0.0005 \mathrm{(stat.)} \pm0.0010\mathrm{(expt.)} \pm0.0011 \mathrm{(hadr.)} \pm0.0044 \mathrm{(theo.)}\,. \) The energy evolution of the moments is also used to determine a value of \(\ensuremath{\alpha_{\mathrm{s}}}\) with slightly larger errors: \(\ensuremath{\alpha_{\mathrm{s}}} \ensuremath{M_{\mathrm{Z}}}=0.1223\pm 0.0005(\mathrm{stat.})\pm 0.0014(\mathrm{expt.})\pm 0.0016(\mathrm{hadr.})^{+0.0054}_{-0.0036}(\mathrm{theo.})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics, Cambridge University Press (1996)

  2. OPAL Collab., P.D. Acton et al. , Z. Phys. C 59, 1 (1993)

    ADS  Google Scholar 

  3. OPAL Collab., G. Alexander et al. , Z. Phys. C 72, 191 (1996)

    Article  ADS  Google Scholar 

  4. OPAL Collab., K. Ackerstaff et al. , Z. Phys. C 75, 193 (1997)

    Article  Google Scholar 

  5. OPAL Collab., G. Abbiendi et al. , Eur. Phys. J. C 16, 185 (2000)

    ADS  Google Scholar 

  6. ALEPH Collab., D. Busculic et al. , Z. Phys. C 73, 409 (1997)

    Article  Google Scholar 

  7. ALEPH Collab., A. Heister et al. , Eur. Phys. J. C 35, 457 (2004)

    ADS  Google Scholar 

  8. DELPHI Collab., P. Abreu et al. , Z. Phys. C 73, 229 (1997)

    Google Scholar 

  9. DELPHI Collab., P. Abreu et al. , Phys. Lett. B 456, 322 (1999)

    Article  ADS  Google Scholar 

  10. DELPHI Collab., J. Abdallah et al. , Eur. Phys. J. C 29, 285 (2003)

    ADS  Google Scholar 

  11. L3 Collab., M. Acciarri et al. , Phys. Lett. B 371, 137 (1996)

    ADS  Google Scholar 

  12. L3 Collab., M. Acciarri et al. , Phys. Lett. B 404, 390 (1997)

    ADS  Google Scholar 

  13. L3 Collab., M. Acciarri et al. , Phys. Lett. B 444, 569 (1998)

    ADS  Google Scholar 

  14. L3 Collab., M. Acciarri et al. , Phys. Lett. B 489, 65 (2000)

    Article  ADS  Google Scholar 

  15. L3 Collab., P. Achard et al. , Phys. Lett. B 536, 217 (2002)

    Article  ADS  Google Scholar 

  16. OPAL Collab., G. Abbiendi et al. , submitted to Eur. Phys. J. C

  17. OPAL Collab., K. Ahmet et al. , Nucl. Instrum. Methods A 305, 275 (1991); S. Anderson et al. , Nucl. Instrum. Methods A 403, 326 (1998); G. Aguillion et al. , Nucl. Instrum. Methods A 417, 266 (1998)

    ADS  Google Scholar 

  18. T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994)

    Article  ADS  Google Scholar 

  19. S. Jadach, B.F.L. Ward, Z. Was, Phys. Lett. B 449, 97 (1999); S. Jadach et al. , Comput. Phys. Commun. 130, 260 (2000)

    ADS  Google Scholar 

  20. G. Marchesini et al. , Comput. Phys. Commun. 67, 465 (1992); G. Corcella et al. , JHEP 0101, 010 (2001)

    Article  ADS  Google Scholar 

  21. J. Fujimoto et al. , Comput. Phys. Commun. 100, 128 (1997)

    Article  Google Scholar 

  22. S. Jadach et al. , Comput. Phys. Commun. 119, 272 (1999)

    Google Scholar 

  23. J. Allison et al. , Nucl. Instrum. Methods A 317, 47 (1992)

    Google Scholar 

  24. L. Lönnblad, Comput. Phys. Commun. 71, 15 (1992)

    Article  ADS  Google Scholar 

  25. OPAL Collab., G. Alexander et al. , Z. Phys. C 69, 543 (1996)

    Article  Google Scholar 

  26. OPAL Collab., G. Abbiendi et al. , Eur. Phys. J. C 35, 293 (2004)

    Article  ADS  Google Scholar 

  27. S. Brandt et al. , Phys. Lett. 12, 57 (1964)

    ADS  Google Scholar 

  28. E. Fahri, Phys. Rev. Lett. 39, 1587 (1977)

    ADS  Google Scholar 

  29. D.P. Barber et al. , Phys. Rev. Lett. 43, 830 (1979)

    ADS  Google Scholar 

  30. J.D. Bjorken, S.J. Brodsky, Phys. Rev. D 1, 1416 (1970)

    ADS  Google Scholar 

  31. SLAC-LBL Collab., G. Hanson et al. , Phys. Rev. Lett. 35, 1609 (1975)

    ADS  Google Scholar 

  32. S.L. Wu, G. Zobernig, Z. Phys. C 2, 107 (1979)

    ADS  Google Scholar 

  33. G. Parisi, Phys. Lett. B 74, 65 (1978); J.F. Donoghue, F.E. Low, S.Y. Pi, Phys. Rev. D 20, 2759 (1979); R.K. Ellis, D.A. Ross, A.E. Terrano, Nucl. Phys. B 178, 421 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  34. T. Chandramohan, L. Clavelli, Nucl. Phys. B 184, 365 (1981)

    Article  ADS  Google Scholar 

  35. L. Clavelli, D. Wyler, Phys. Lett. B 103, 383 (1981)

    ADS  Google Scholar 

  36. S. Catani, G. Turnock, B.R. Webber, Phys. Lett. B 295, 269 (1992)

    Article  ADS  Google Scholar 

  37. S. Catani et al. , Phys. Lett. B 269, 432 (1991)

    Article  Google Scholar 

  38. R.K. Ellis, D.A. Ross, A.E. Terrano, Nucl. Phys. B 178, 421 (1981)

    Article  ADS  Google Scholar 

  39. R.W.L. Jones et al. , JHEP 12, 007 (2003)

    Article  Google Scholar 

  40. S. Catani, L. Trentadue, G. Turnock, B.R. Webber, Nucl. Phys. B 407, 3 (1993)

    Article  ADS  Google Scholar 

  41. Yu.L. Dokshitzer, A. Lucenti, G. Marchesini, G.P. Salam, JHEP 01, 011 (1998)

    ADS  Google Scholar 

  42. A. Banfi, G.P. Salam, G. Zanderighi, JHEP 01, 018 (2002)

    ADS  Google Scholar 

  43. S. Catani, B.R. Webber, Phys. Lett. B 427, 377 (1998)

    Article  ADS  Google Scholar 

  44. S. Catani, G. Turnock, B.R. Webber, Phys. Lett. B 295, 269 (1992)

    Article  ADS  Google Scholar 

  45. G. Dissertori, M. Schmelling, Phys. Lett. B 361, 167 (1995)

    Article  ADS  Google Scholar 

  46. S. Catani et al. , Phys. Lett. B 269, 432 (1991)

    Article  Google Scholar 

  47. S. Catani, M.H. Seymour, Phys. Lett. B 378, 287 (1996)

    Article  ADS  Google Scholar 

  48. Z. Kunszt, P. Nason [convenors], in: Z Physics at LEP I, edited by G. Altarelli, R. Kleiss, C. Verzegnassi, CERN 89-08 (1989)

  49. OPAL Collab., G. Alexander et al. , Z. Phys. C 52, 175 (1991)

    ADS  Google Scholar 

  50. OPAL Collab., G. Abbiendi et al. , Eur. Phys. J. C 33, 173 (2004)

    ADS  Google Scholar 

  51. OPAL Collab., G. Abbiendi et al. , Phys. Lett. B 493, 249 (2000)

    Article  Google Scholar 

  52. G.D. Lafferty, T.R. Wyatt, Nucl. Instrum. Methods A 355, 541 (1995)

    ADS  Google Scholar 

  53. ALEPH, DELPHI, L3 and OPAL Collaborations and the LEP QCD Working Group, Paper in preparation

  54. Particle Data Group, S. Eidelman et al. , Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Consortia

Additional information

Received: 13 August 2004, Revised: 17 December 2004, Published online: 3 March 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

The OPAL Collaboration. Measurement of event shape distributions and moments in e + e \(^-\rightarrow \mathrm{hadrons}\) at 91-209 GeV and a determination of \(\ensuremath{\alpha_{\mathrm{s}}}\) . Eur. Phys. J. C 40, 287–316 (2005). https://doi.org/10.1140/epjc/s2005-02120-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2005-02120-6

Keywords

Navigation