Skip to main content
Log in

Measurement of the running of the QED couplingin small-angle Bhabha scattering at LEP

  • Experimental Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

Using the OPAL detector at LEP, the running of the effective QED coupling α(t) is measured for space-like momentum transfer from the angular distribution of small-angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain: \( \Delta \alpha {\left( { - 6.07\;{\text{GeV}}^{2} } \right)} - \Delta \alpha {\left( { - 1.81\;{\text{GeV}}^{2} } \right)} = {\left( {440 \pm 58 \pm 43 \pm 30} \right)} \times 10^{{ - 5}} ,\) where the first error is statistical, the second is the experimental systematic and the third is the theoretical uncertainty. This agrees with current evaluations of α(t). The null hypothesis that α remains constant within the above interval of -t is excluded with a significance above 5σ. Similarly, our results are inconsistent at the level of 3σ with the hypothesis that only leptonic loops contribute to the running. This is currently the most significant direct measurement where the running α(t) is probed differentially within the measured t range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.J. Mohr, B.N. Taylor, Rev. Mod. Phys. 72, 351 (2000)

    Article  ADS  Google Scholar 

  2. S. Eidelman, F. Jegerlehner, Z. Phys. C 67, 585 (1995)

    Article  Google Scholar 

  3. H. Burkhardt, B. Pietrzyk, Phys. Lett. B 513, 46 (2001)

    ADS  Google Scholar 

  4. The LEP Collaborations ALEPH, DELPHI, L3 and OPAL, the LEP Electroweak Working Group, the SLD Electroweak and Heavy Flavour Groups, CERN-PH-EP/2004-069, hep-ex/0412015

  5. J.F. de Troconiz, F.J. Yndurain, Phys. Rev. D 71, 073008 (2005)

    ADS  Google Scholar 

  6. S.L. Adler, Phys. Rev. D 10, 3714 (1974)

    ADS  Google Scholar 

  7. S. Eidelman, F. Jegerlehner, A.L. Kataev, O. Veretin, Phys. Lett. B 454, 369 (1999); F. Jegerlehner, hep-ph/0308117

    ADS  Google Scholar 

  8. J. Bailey et al. , Nucl. Phys. B 150, 1 (1979)

    Google Scholar 

  9. Muon g-2 Collaboration, G.W. Bennett et al. , Phys. Rev. Lett. 92, 161802 (2004); D.W. Hertzog, W.M. Morse, Ann. Rev. Nucl. Part. Sci. 54, 141 (2004)

    Google Scholar 

  10. TOPAZ Collaboration, I. Levine et al. , Phys. Rev. Lett. 78, 424 (1997)

    Google Scholar 

  11. OPAL Collaboration, G. Abbiendi et al. , Eur. Phys. J. C 33, 173 (2004)

    ADS  Google Scholar 

  12. VENUS Collaboration, S. Odaka et al. , Phys. Rev. Lett. 81, 2428 (1998)

    Google Scholar 

  13. L3 Collaboration, M. Acciarri et al. , Phys. Lett. B 476, 40 (2000)

    Google Scholar 

  14. L3 Collaboration, P. Achard et al. , CERN-PH-EP-2005-021, to be published in Phys. Lett. B.

  15. OPAL Collaboration, G. Abbiendi et al. , Eur. Phys. J. C 14, 373 (2000)

    ADS  Google Scholar 

  16. A.B. Arbuzov, D. Haidt, C. Matteuzzi, M. Paganoni, L. Trentadue, Eur. Phys. J. C 34, 267 (2004)

    Article  ADS  Google Scholar 

  17. S. Jadach, O. Nicrosini et al. , in: Physics at , CERN 96-01, edited by G. Altarelli, T. Sjöstrand, F. Zwirner (CERN, Geneva, 1996), Vol. 2, pp. 229-298

  18. A.B. Arbuzov, V.S. Fadin, E.A. Kuraev, L.N. Lipatov, N.P. Merenkov, L. Trentadue, Nucl. Phys. B 485, 457 (1997)

    Article  ADS  Google Scholar 

  19. S. Jadach, W. Płaczek, E. Richter-, B.F.L. Ward, Z. , Comput. Phys. Commun. 102, 229 (1997)

    ADS  Google Scholar 

  20. H. Burkhardt, B. Pietrzyk, Phys. Lett. B 356, 398 (1995)

    ADS  Google Scholar 

  21. OPAL Collaboration, K. Ahmet et al. , Nucl. Instrum. Methods A 305, 275 (1991)

    Google Scholar 

  22. F.A. Berends, R. Kleiss, Nucl. Phys. B 186, 22 (1981)

    Article  ADS  Google Scholar 

  23. B.F.L. Ward, S. Jadach, M. Melles, S.A. Yost, Phys. Lett. B 450, 262 (1999)

    ADS  Google Scholar 

  24. F.A. Berends, R. Kleiss, Nucl. Phys. B 228, 537 (1983)

    Article  ADS  Google Scholar 

  25. S. Jadach, E. Richter-, B.F.L. Ward, Z. , Phys. Lett. B 253, 469 (1991); Comput. Phys. Commun. 70, 305 (1992)

    ADS  Google Scholar 

  26. S. Jadach, E. Richter-, B.F.L. Ward, Z. , Phys. Lett. B 260, 438 (1991)

    ADS  Google Scholar 

  27. G. Montagna, O. Nicrosini, F. Piccinini, Riv. Nuovo Cim. 21N9, 1 (1998)

    Google Scholar 

  28. S. Jadach, W. Płaczek, B.F.L. Ward, Phys. Lett. B 353, 349 (1995)

    ADS  Google Scholar 

  29. G. Montagna, M. Moretti, O. Nicrosini, A. Pallavicini, F. Piccinini, Phys. Lett. B 459, 649 (1999); Nucl. Phys. B 547, 39 (1999)

    ADS  Google Scholar 

  30. H. Burkhardt, B. Pietrzyk, private communication

Download references

Author information

Consortia

Additional information

Received: 2 March 2005, Revised: 30 August 2005, Published online: 3 November 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

The OPAL Collaboration. Measurement of the running of the QED couplingin small-angle Bhabha scattering at LEP. Eur. Phys. J. C 45, 1–21 (2006). https://doi.org/10.1140/epjc/s2005-02389-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2005-02389-3

Keywords

Navigation