Skip to main content
Log in

Colour reconnection in e+e → W+Wat \( {\sqrt s } \)=180–209 GeV

  • Experimental Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

The effects of the final state interaction phenomenon known as colour reconnection are investigated at centre-of-mass energies in the range \(\sqrt s\) ≃ 189–209 using the OPAL detector at LEP. Colour reconnection is expected to affect observables based on charged particles in hadronic decays of . Measurements of inclusive charged particle multiplicities, and of their angular distribution with respect to the four jet axes of the events, are used to test models of colour reconnection. The data are found to exclude extreme scenarios of the Sjöstrand-Khoze Type I () model and are compatible with other models, both with and without colour reconnection effects. In the context of the model, the best agreement with data is obtained for a reconnection probability of 37%. Assuming no colour reconnection, the charged particle multiplicity in hadronically decaying W bosons is measured to be \({\left\langle {n^{{{\text{qq}}}}_{{{\text{ch}}}} } \right\rangle }\)=19.38±0.05(stat.)±0.08(syst.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Gustafson, U. Pettersson, P.M. Zerwas, Phys. Lett. B 209, 90 (1988)

    Article  ADS  Google Scholar 

  2. T. Sjöstrand, V.A. Khoze, Z. Phys. C 62, 281 (1994); Phys. Rev. Lett. 72, 28 (1994)

    Article  ADS  Google Scholar 

  3. T. Sjöstrand, Comput. Phys. Commun. 135, 238 (2001)

    Article  ADS  MATH  Google Scholar 

  4. G. Gustafson, J. Häkkinen, Z. Phys. C 64, 659 (1994); C. Friberg, G. Gustafson, J. Häkkinen, Nucl. Phys. B 490, 289 (1997)

    Article  ADS  Google Scholar 

  5. L. Lönnblad, Z. Phys. C 70, 107 (1996)

    Article  Google Scholar 

  6. L. Lönnblad, Comput. Phys. Commun. 71, 15 (1992)

    Article  ADS  Google Scholar 

  7. G. Altarelli, T. Sjöstrand, F. Zwirner (eds.), Proceedings of the CERN LEP2 Workshop, CERN 96-01, February 1996, Vol. 2, p. 159

  8. G. Corcella, J. High Energy Phys. JHEP 01, 010 (2001)

    Article  ADS  Google Scholar 

  9. J. Ellis, K. Geiger, Phys. Rev. D 54, 1967 (1996)

    Article  ADS  Google Scholar 

  10. K. Geiger, Comput. Phys. Commun. 104, 70 (1997)

    Article  ADS  Google Scholar 

  11. OPAL Collaboration, K. Ackerstaff, Eur. Phys. J. C 1, 395 (1998)

    Article  ADS  Google Scholar 

  12. OPAL Collaboration, G. Abbiendi, Phys. Lett. B 453, 153 (1999)

    Article  ADS  Google Scholar 

  13. Delphi Collaboration, P. Abreu, Eur. Phys. J. C 18, 203 (2000); erratum, Eur. Phys. J. C 25, 493 (2000); Phys. Lett. B 416, 233 (1998)

    ADS  Google Scholar 

  14. G. Altarelli, T. Sjöstrand, F. Zwirner (eds.), Proceedings of the CERN LEP2 Workshop, CERN 96-01, February 1996, Vol. 1, p. 191

  15. A. Ballestrero, J. Phys. G, Nucl. Part. Phys. 24, 365 (1998)

    ADS  Google Scholar 

  16. D. Duchesneau, New Method Based on Energy and Particle Flow in e+e → W+W → Hadron Events for Color Reconnection Studies, LAPP-EXP-2000-02, http:/wwwlapp.in2p3.frpreplappLAPP\_EX2000\_02.pdf

  17. JADE Collaboration, W. Bartel, Phys. Lett. B 101, 129 (1981)

    Article  Google Scholar 

  18. The LEP Collaborations ALEPH, DELPHI, L3, OPAL, the LEP Electroweak Working Group, and the SLD Electroweak and Heavy Flavour Groups, A combination of preliminary electroweak measurements and constraints on the Standard Model, CERN-EP/2004-069, hep-ex/0412015

  19. OPAL Collaboration, K. Ahmet, Nucl. Instrum. Methods A 305, 275 (1991); B.E. Anderson, IEEE Trans. Nucl. Sci. 41, 845 (1994); S. Anderson, Nucl. Instrum. Methods A 403, 326 (1998)

    Article  Google Scholar 

  20. OPAL Collaboration, G. Abbiendi, Eur. Phys. J. C nnn, mmm (2005). Completed OPAL paper, to be sent to EPJ C at same time as this paper

  21. J. Allison, Nucl. Instrum. Methods A 317, 47 (1992)

    Article  ADS  Google Scholar 

  22. T. Sjöstrand, V.A. Khoze, Eur. Phys. J. C 6, 271 (1999)

    Article  ADS  Google Scholar 

  23. S. Jadach, Comput. Phys. Commun. 119, 272 (1999)

    Article  ADS  Google Scholar 

  24. OPAL Collaboration, G. Alexander, Z. Phys. C 69, 543 (1996)

    Article  Google Scholar 

  25. OPAL Collaboration, G. Abbiendi, Eur. Phys. J. C 35, 293 (2004)

    Article  ADS  Google Scholar 

  26. L. Lönnblad, private communication

  27. OPAL Collaboration, G. Abbiendi, Phys. Lett. B 507, 29 (2001)

    Article  ADS  Google Scholar 

  28. L. Lönnblad, T. Sjöstrand, Eur. Phys. J. C 2, 165 (1998)

    Article  ADS  Google Scholar 

  29. S. Jadach, B.F.L. Ward, Z. Was, Phys. Lett. B 449, 97 (1999); Comput. Phys. Commun. 130, 260 (2000)

    Article  ADS  Google Scholar 

  30. R. Engel, J. Ranft, Phys. Rev. D 54, 4244 (1996); R. Engel, Z. Phys. C 66, 203 (1995)

    Article  ADS  Google Scholar 

  31. J. Fujimoto, Comput. Phys. Commun. 100, 128 (1997)

    Article  ADS  Google Scholar 

  32. S. Jadach, Comput. Phys. Commun. 140, 475 (2001)

    Article  ADS  MATH  Google Scholar 

  33. S. Jadach, Phys. Lett. B 417, 326 (1998); Comput. Phys. Commun. 140, 432 (2001)

    Article  ADS  Google Scholar 

  34. OPAL Collaboration, G. Alexander, Z. Phys. C 72, 191 (1996)

    Article  Google Scholar 

  35. N. Brown, W.J. Stirling, Phys. Lett. B 252, 657 (1990); S. Catani, Phys. Lett. B 269, 432 (1991); S. Bethke, Z. Kunszt, D.E. Soper, W.J. Stirling, Nucl. Phys. B 370, 310 (1992); N. Brown, W.J. Stirling, Z. Phys. C 53, 629 (1992)

    Article  ADS  Google Scholar 

  36. OPAL Collaboration, K. Ackerstaff, Eur. Phys. J. C 2, 213 (1998); OPAL Collaboration, G. Abbiendi, Eur. Phys. J. C 12, 567 (2000)

    Article  ADS  Google Scholar 

  37. DELPHI Collaboration, P. Abreu, Phys. Lett. B 401, 181 (1997); OPAL Collaboration, G. Abbiendi, Eur. Phys. J. C 8, 559 (1999); ALEPH Collaboration, R. Barate, Phys. Lett. B 478, 50 (2000)

    Article  Google Scholar 

  38. L3 Collaboration, M. Acciarri, Phys. Lett. B 493, 233 (2000); L3 Collaboration, P. Achard, Phys. Lett. B 547, 139 (2002); ALEPH Collaboration, S. Schael, Phys. Lett. B 606, 265 (2005)

    Article  Google Scholar 

  39. OPAL Collaboration, G. Abbiendi, Eur. Phys. J. C 36, 297 (2004)

    ADS  Google Scholar 

  40. OPAL Collaboration, G. Abbiendi, Phys. Lett. B 493, 249 (2000)

    Article  Google Scholar 

  41. OPAL Collaboration, G. Abbiendi, Eur. Phys. J. C 32, 303 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors

Consortia

Additional information

Arrival of the final proofs: 28 November 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbiendi, G., The OPAL Collaboration. Colour reconnection in e+e → W+Wat \( {\sqrt s } \)=180–209 GeV. Eur. Phys. J. C 45, 291–305 (2006). https://doi.org/10.1140/epjc/s2005-02439-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2005-02439-x

Keywords

Navigation