Skip to main content

Advertisement

Log in

Correlation of optical reflectivity with numerical calculations for a two-dimensional photonic crystal designed in Ge

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A two dimensional photonic crystal (2DPhC) with triangular symmetry is investigated using optical reflectivity measurements and numerical calculations. The system has been obtained by direct laser writing, using a pulsed laser (λ = 775 nm), perforating an In-doped Ge wafer. A lattice of holes with well-defined symmetry has been designed. Analyzing the spectral signature of PBGs recorded experimentaly with finite difference time domain theoretical calculations one was able to prove the relation between the geometric parameters (hole format, lattice constant) of the system and its ability to trap and guide the radiation in specific energy range. It was shown that at low frequency and telecommunication ranges of transvelsal electric modes photonic band gap occur. This structure may have potential aplications in designing photonic devices with applications in energy storage and conversion as potential alternative to Si-based technology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  3. S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, Science 289, 604 (2000)

    Article  ADS  Google Scholar 

  4. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press, 2008)

  5. D.C. Marinica, A.G. Borisov, S.V. Shabanov, Phys. Rev. Lett. 100, 183902 (2008)

    Article  ADS  Google Scholar 

  6. J. Dahdah, M. Pilar-Bernal, N. Courjal, G. Ulliac, F. Baida, J. Appl. Phys. 110, 074318 (2011)

    Article  ADS  Google Scholar 

  7. X. Liu, T. Shimada, R. Miura, S. Iwamoto, Y. Arakawa, Y.K. Kato, Phys. Rev. Appl. 3, 014006 (2015)

    Article  ADS  Google Scholar 

  8. H.W. Yang, D. Xu, Eur. Phys. J. D 64, 387 (2013)

    Article  ADS  Google Scholar 

  9. U.W. Paetzold, S. Lehnen, K. Bittkau, U. Rau, R. Carius, Nano Lett. 14, 6599 (2014)

    Article  ADS  Google Scholar 

  10. R. Abdi-Ghaleh, M. Asad, Eur. Phys. J. D 69, 13 (2015)

    Article  ADS  Google Scholar 

  11. D.G. Popescu, U. Politeh. Buch. Sci. Bull., Ser. A 75, 237 (2013)

    Google Scholar 

  12. B. Rezaei, T.F. Khalkhali, A.S. Vala, M. Kalafi, J. Mod. Optic. 61, 904 (2014)

    Article  ADS  Google Scholar 

  13. H. Zhong, B. Tian, Y. Jiang, M. Li, P. Wang, W.J. Liu, Eur. Phys. J. D 67, 131 (2013)

    Article  ADS  Google Scholar 

  14. Y. Akahane, T. Asano, B.S. Song, S. Noda, Appl. Phys. Lett. 83, 1512 (2003)

    Article  ADS  Google Scholar 

  15. S. Vignolini, F. Intonti, F. Riboli, L. Balet, L.H. Li, M. Francardi, A. Gerardino, A. Fiore, D.S. Wiersma, M. Gurioli, Phys. Rev. Lett. 105, 123902 (2010)

    Article  ADS  Google Scholar 

  16. C.O. Chui, K.C. Saraswat, in Advanced Germanium MOS Devices. In Germanium-Based Technologies: from Materials to Devices (Elsevier, Amsterdam, 2007), pp. 363−386

  17. S. Assefa, F. Xia, Y. Vlasov, Nature 464, 80 (2010)

    Article  ADS  Google Scholar 

  18. J. Michel, J. Liu, L.C. Kimerling, Nat. Photonics 4, 527 (2010)

    Article  ADS  Google Scholar 

  19. P. Boucaud, M. El Kurdi, A. Ghrib, M. Prost, M. de Kersauson, S. Sauvage, F. Aniel, X. Checoury, G. Beaudoin, L. Largeau, I. Sagnes, G. Ndong, M. Chaigneau, R. Ossikovski, Photonics Res. 1, 102 (2013)

    Article  Google Scholar 

  20. R.E. Camacho-Aguilera, Y. Cai, N. Patel, J.T. Bessette, M. Romagnoli, L.C. Kimerling, J. Michel, Opt. Express 20, 11316 (2012)

    Article  ADS  Google Scholar 

  21. V. Sorianello, L. Colace, C. Maragliano, D. Fulgoni, L. Nash, G. Assanto, Opt. Mater. Express 3, 216 (2013)

    Article  Google Scholar 

  22. D.G. Popescu, M.A. Husanu, Phys. Status Solidi RRL 7, 274 (2013)

    Article  Google Scholar 

  23. D.G. Popescu, M.A. Husanu, Thin Solid Films 552, 241 (2014)

    Article  ADS  Google Scholar 

  24. W. Zhang, X. Lin, Z. Jin, G. Ma, M. Zhong, Opt. Express 21, 27622 (2013)

    Article  ADS  Google Scholar 

  25. M.A. Husanu, C.P. Ganea, I. Anghel, C. Florica, O. Rasoga, D.G. Popescu, Appl. Surf. Sci. 355, 1186 (2015)

    Article  ADS  Google Scholar 

  26. I. Anghel, F. Jipa, A. Andrei, S. Simion, R. Dabu, A. Rizea, M. Zamfirescu, Optics Laser Technol. 52, 65 (2013)

    Article  ADS  Google Scholar 

  27. S.G. Johnson, J.D. Joannopoulos, MIT Photonic-Bands Package, http://ab-initio.mit.edu/mpb/

  28. S.G. Johnson, J.D. Joannopoulos, MIT Electromagnetic Equation Propagation Bands Package, http://ab-initio.mit.edu/meep/

  29. S. Johnson, J. Joannopoulos, Opt. Express 8, 173 (2001)

    Article  ADS  Google Scholar 

  30. K. Busch, G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelasvili, M. Wegener, Phys. Rep. 444, 101 (2007)

    Article  ADS  Google Scholar 

  31. Z. Zhang, S. Satpathy, Phys. Rev. Lett. 65, 2650 (1990)

    Article  ADS  Google Scholar 

  32. C.W. Hsu, B. Zhen, J. Lee, S.L. Chua, S.G. Johnson, J.D. Joannopoulos, M. Slojacic, Nature 499, 188 (2013)

    Article  ADS  Google Scholar 

  33. C.W. Hsu, B. Zhen, S.L. Chua, S.G. Johnson, J.D. Joannopoulos, M. Soljacic, Light: Sci. Appl. 2, e84 (2013)

    Article  Google Scholar 

  34. S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, S. Noda, Opt. Express 19, 11963 (2011)

    Article  ADS  Google Scholar 

  35. L. Ondic, M. Varga, K. Hruska, A. Kromka, K. Herynkova, B. Hoenerlage, I. Pelant, Appl. Phys. Lett. 102, 251111 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Georgeta Popescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husanu, M., Popescu, D., Ganea, C. et al. Correlation of optical reflectivity with numerical calculations for a two-dimensional photonic crystal designed in Ge. Eur. Phys. J. D 69, 273 (2015). https://doi.org/10.1140/epjd/e2015-60478-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60478-7

Keywords

Navigation