Skip to main content
Log in

Dynamics of apokamp-type atmospheric pressure plasma jets

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The paper describes a new discharge source of atmospheric pressure plasma jets (APPJs) in air with no gas supply through the discharge region. In this discharge mode, plasma jets develop from the bending point of a bright current channel between two electrodes and are therefore termed an apokamp (from Greek ‘off’ and ‘bend’). The apokamp can represent single plasma jets of length up 6 cm or several jets, and the temperature of such jets can range from more than 1000 °C at their base to 100–250 °C at their tip. Apokamps are formed at maximum applied voltage of positive polarity, provided that the second electrode is capacitively decoupled with ground. According to high-speed photography with time resolution from several nanoseconds to several tens of nanoseconds, the apokamp consists of a set of plasma bullets moving with a velocity of 100–220 km/s, which excludes the convective mechanism of plasma decay. Estimates on a 100-ns scale show that the near-electrode zones and the zones from which apokamps develop are close in temperature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Lu, G.V. Naidis, M. Laroussi, S. Reuter, D.B. Graves, K. Ostrikov, Phys. Rep. 630, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. O.V. Penkov, M. Khadem, W.-S. Lim, D.-E. Kim, J. Coat. Technol. Res. 12, 225 (2015)

    Article  Google Scholar 

  3. J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, Th. von Woedtke, R. Brandenburg, T. von dem Hagen, K.-D. Weltmann, J. Phys. D: Appl. Phys. 44, 013002 (2011)

    Article  ADS  Google Scholar 

  4. M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, J.L. Zimmermann, New J. Phys. 11, 115012 (2009)

    Article  ADS  Google Scholar 

  5. A. Schutze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, IEEE Trans. Plasma Sci. 26, 1685 (1998)

    Article  ADS  Google Scholar 

  6. Z. Machala, K. Hensel, Yu. Akishev, Plasma for Bio-Decontamination, Medicine and Food Security, NATO Science for Peace and Security Series A: Chemistry and Biology (Springer, 2012)

  7. J. Tang, S. Li, W. Zhao, Y. Wang, Y. Duan, Appl. Phys. Lett. 100, 253505 (2012)

    Article  ADS  Google Scholar 

  8. O.S. Zhdanova, V.S. Kuznetsov, V.A. Panarin, V.S. Skakun, E.A Sosnin, V.F. Tarasenko, Prikl. Fiz. (Appl. Phys.) 2, 34 (2015) (in Russian)

    Google Scholar 

  9. J.Y. Kim, J. Ballato, S.-O. Kim, Plasma Process. Polym. 9, 253 (2012)

    Article  Google Scholar 

  10. J.Y. Kim, D.-H. Lee, J. Ballato, W. Cao, S.-O. Kim, Appl. Phys. Lett. 101, 224101 (2012)

    Article  ADS  Google Scholar 

  11. A. Sarani, A.Y. Nikiforov, C. Leys, Phys. Plasmas 17, 063504 (2010)

    Article  ADS  Google Scholar 

  12. C. Cheng, S. Jie, X. De-Zhi, X. Hong-Bing, L. Yan, F. Shi-Dong, M. Yue-Dong, C. Paul K, Chin. Phys. B 23, 075204 (2014)

    Article  ADS  Google Scholar 

  13. A.S. Chiper, W. Chen, O. Mejlholm, P. Dalgaard, E. Stamate, Plasma Sources Sci. Technol. 20, 025008 (2011)

    Article  ADS  Google Scholar 

  14. K. Malecha, Sens. Actuators B 181, 486 (2013)

    Article  Google Scholar 

  15. S.E. Babayan, J.Y. Jeong, V.J. Tu, J. Park, G.S. Selwyn, R.F. Hicks, Plasma Source Sci. Technol. 7, 286 (1998)

    Article  ADS  Google Scholar 

  16. E. Stoffels, A.J. Flikweert, W.W. Stoffels, G.M.W. Kroesen, Plasma Sources Sci. Technol. 11, 383 (2002)

    Article  ADS  Google Scholar 

  17. J.R. Roth, D.M. Sherman, R.B. Gadri, F. Karakaya, Zhiyu Chen, T.C. Montie, K. Kelly-Wintenberg, P.P.-Y. Tsai, IEEE Trans. Plasma Sci. 28, 56 (2000)

    Article  ADS  Google Scholar 

  18. Ju.S. Akishev, M.E. Grushin, N.I. Trushkin, Patent RU 2398589, priority date 26.10.2007

  19. X.L. Deng, A.Yu. Nikiforov, P. Vanraes, Ch. Leys, J. Appl. Phys. 113, 023305 (2013)

    Article  ADS  Google Scholar 

  20. G. Uchida, K. Takenaka, Y. Setsuhara, J. Appl. Phys. 117, 153301 (2015)

    Article  ADS  Google Scholar 

  21. K.L. Lai, K.K. Jayapalan, O.H. Chin, P.F. Lee, C.S. Wong, AIP Conf. Proc. 1657, 150002 (2015)

    Article  Google Scholar 

  22. T. Shao, C. Zhang, R. Wang, Y. Zhou, Q. Xie, Z. Fang, IEEE Trans. Plasma Sci. 43, 726 (2015)

    Article  ADS  Google Scholar 

  23. E.A. Sosnin, V.A. Panarin, V.S. Skakun, V.F. Tarasenko, D.S. Pechenitsin, D.S. Kuznetsov, Proc. SPIE 9810, 98101I (2015)

    ADS  Google Scholar 

  24. E.A. Sosnin, V.A. Panarin, V.S. Skakun, V.F. Tarasenko, D.S. Pechenitsin, V.S. Kuznetsov, Tech. Phys. 61, 789 (2016)

    Article  Google Scholar 

  25. A. Abahazem, A. Mraihi, N. Merbahi, M. Yousfi, O. Eichwald, IEEE Trans. Plasma Sci. 39, 2230 (2011)

    Article  ADS  Google Scholar 

  26. X. Pei, X. Lu, J. Liu, D. Liu, Y. Yang, K. Ostrikov, P.K. Chu, Y. Pan, J. Phys. D: Appl. Phys. 45, 165205 (2012)

    Article  ADS  Google Scholar 

  27. Y.Ch. Hong, H.S. Uhm, Appl. Phys. Lett. 89, 221504 (2006)

    Article  ADS  Google Scholar 

  28. A.-A.H. Mohamed, J.F. Kolb, K.H. Shoenbach, Eur. Phys. J. D 60, 517 (2010)

    Article  ADS  Google Scholar 

  29. X. Li, J. Tang, X. Zhan, X. Yuan, Zh. Zhao, Y. Yan, Y. Duan, Appl. Phys. Lett. 103, 033519 (2013)

    Article  ADS  Google Scholar 

  30. Z. Niu, T. Shao, IEEE Trans. Plasma Sci. 39, 2127495 (2011)

    Article  Google Scholar 

  31. E.A. Sosnin, V.S. Skakun, V.A. Panarin, D.S. Pechenitsin, V.F. Tarasenko, E.Kh. Baksht, J. Exp. Theor. Phys. Lett. 103, 761 (2016)

    Article  Google Scholar 

  32. M. Teschke, J. Kedzierski, E.G. Finantu-Dinu, D. Korzec, J. Engemann, IEEE Trans. Plasma Sci. 33, 310 (2005)

    Article  ADS  Google Scholar 

  33. X. Lu, M. Laroussi, J. Appl. Phys. 100, 063302 (2006)

    Article  ADS  Google Scholar 

  34. G.V. Naidis, J. Phys. D: Appl. Phys. 43, 402001 (2010)

    Article  ADS  Google Scholar 

  35. E. Karakas, M. Laroussi, J. Appl. Phys. 108, 063305 (2010)

    Article  ADS  Google Scholar 

  36. X. Lu, M. Laroussi, V. Puech, Plasma Sources Sci. Technol. 21, 034005 (2012)

    Article  ADS  Google Scholar 

  37. Y.B. Xian, P. Zhang, X.P. Lu, X.K. Pei, S.Q. Wu, Q. Xiong, K. Ostrikov, Sci. Rep. 3, 1599 (2013)

    Article  ADS  Google Scholar 

  38. S. Wu, X. Lu, Phys. Plasmas 21, 123509 (2014)

    Article  ADS  Google Scholar 

  39. D.A. Lacoste, A. Bourdon, K. Kuribara, K. Urabe, S. Stauss, K. Terashima, Plasma Sources Sci. Technol. 23, 062006 (2014)

    Article  ADS  Google Scholar 

  40. S. Wu, H. Xu, Y. Xian, Y. Lu, X. Lu, AIP Adv. 5, 027110 (2015)

    Article  ADS  Google Scholar 

  41. Y.B. Xian, X.P. Lu, S.Q. Wu, P.K. Chu, Y. Pan, Appl. Phys. Lett. 100, 123702 (2012)

    Article  ADS  Google Scholar 

  42. M.F. Zhukov, A.S. Koroteev, B.A. Uryukov, Applied Dynamics of Thermal Plasma (Nauka, Novosibirsk, 1975) (in Russian)

  43. E.A. Sosnin, V.S. Skakun, V.A. Panarin, V.F. Tarasenko, O.S. Zhdanova, P.A. Goltsova, Modern Sci. Res. Innov. (2016), URL: http://web.snauka.ru/en/issues/2016/03/65016

  44. J. Mahoney, W. Zhu, V.S. Johnson, K.H. Becker, J.L. Lopez, Eur. Phys. J. D 60, 441 (2010)

    Article  ADS  Google Scholar 

  45. J. Shi, F. Zhong, J. Zhang, D.W. Liu, M.G. Kong, Phys. Plasmas 15, 013504 (2008)

    Article  ADS  Google Scholar 

  46. M.I. Lomaev, D.V. Beloplotov, V.F. Tarasenko, D.A. Sorokin, IEEE Trans. Dielectr. Electr. Insul. 22, 1833 (2015)

    Article  Google Scholar 

  47. V.F. Tarasenko, D.V. Beloplotov, M.I. Lomaev, Plasma Phys. Rep. 41, 832 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard A. Sosnin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosnin, E.A., Panarin, V.A., Skakun, V.S. et al. Dynamics of apokamp-type atmospheric pressure plasma jets. Eur. Phys. J. D 71, 25 (2017). https://doi.org/10.1140/epjd/e2016-70466-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70466-0

Keywords

Navigation