Skip to main content
Log in

Confinement effects on the slow dynamics of a supercooled polymer melt: Rouse modes and the incoherent scattering function

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Results of large-scale molecular-dynamics simulations of a supercooled polymer film are presented (F. Varnik, J. Baschnagel, K. Binder, J. Phys. IV 10, 239 (2000)). The dynamic and static properties of the system are studied for a wide range of film thicknesses (from 3 to about 55 times the bulk radius of gyration) and temperatures (from the normal liquid state to the supercooled region). The system is confined between two completely smooth and purely repulsive walls. Motivated by the previous results on the enhancement of the local relaxation dynamics due to the confinement (F. Varnik, J. Baschnagel, K. Binder, Eur. Phys. J. E 8, 175 (2002); Phys. Rev. E. 65, 021507 (2002)), we now study the effect of the walls on the dynamics of the Rouse modes. It has been reported from Monte Carlo studies of the Bond Fluctuation Model (BFM) that, contrary to the enhancement of the “cage dynamics” (exemplified by a faster relaxation of the incoherent scattering function in the film), Rouse modes exhibit a slower relaxation in the confined system (C. Mischler, J. Baschnagel, K. Binder, Adv. Colloid Interface Sci. 94, 197 (2001)). However, we do not observe such a discrepancy for our continuum model: At a given temperature, the relaxation of a given Rouse mode is faster in the film than in the bulk in accordance with the acceleration of the dynamics around the cage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Donth, The Glass Transition (Springer, Berlin-Heidelberg, 2001).

  2. M. Arndt, R. Stannarius, H. Groothues, E. Hempel, F. Kremer, Phys. Rev. Lett. 79, 2077 (1997).

    Article  Google Scholar 

  3. J.-L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994).

    Google Scholar 

  4. J.A. Forrest, R.A.L. Jones, in Polymer Surfaces, Interfaces and Thin Films, edited by A. Karim, S. Kumar (World Scientific, Singapore, 2000) pp. 251-294.

  5. Proceedings of the International Workshop on Dynamics in Confinement, J. Phys. IV, Vol. 10 (2000).

  6. J.A. Forrest, K. Dalnoki-Veress, Adv. Colloid Interface Sci. 94, 167 (2001).

    Article  Google Scholar 

  7. P.G. de Gennes, Eur. Phys. J. E 2, 201 (2000).

    Article  Google Scholar 

  8. K. Binder, Ferroelectrics 73, 43 (1987).

    Google Scholar 

  9. K. Kim, R. Yamamoto, Phys. Rev. E 61, 41 (2000).

    Article  Google Scholar 

  10. S. Büchner, A. Heuer, Phys. Rev. E 60, 6507 (1999).

    Article  Google Scholar 

  11. F. Varnik, J. Baschnagel, K. Binder, J. Phys. IV 10, 239 (2000).

    Google Scholar 

  12. F. Varnik, J. Baschnagel, K. Binder, Eur. Phys. J. E 8, 175 (2002).

    Google Scholar 

  13. F. Varnik, J. Baschnagel, K. Binder, Phys. Rev. E. 65, 021507 (2002).

    Article  Google Scholar 

  14. P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 52, 277 (2000) and in reference [5].

    Google Scholar 

  15. J.A. Torres, P.F. Nealey, J.J. de Pablo, Phys. Rev. Lett. 85, 3221 (2000).

    Article  Google Scholar 

  16. M. Aichele, J. Baschnagel, Eur. Phys. J. E 5, 229, 245 (2001).

    Article  Google Scholar 

  17. C. Bennemann, W. Paul, K. Binder, B. Dünweg, Phys. Rev. E 57, 843 (1998).

    Google Scholar 

  18. C. Bennemann, J. Baschnagel, W. Paul, K. Binder, Comp. Theor. Polym. Sci. 9, 217 (1999).

    Article  Google Scholar 

  19. K. Binder, J. Baschnagel, W. Paul, Prog. Polym. Sci. 28, 115 (2003).

    Article  Google Scholar 

  20. W. Götze, J. Phys. Condens. Matter 11, A1 (1999).

  21. W. Götze, L. Sjögren, Rep. Progr. Phys. 55, 241 (1992).

    Article  Google Scholar 

  22. M. Doi, S.F. Edwards, Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).

  23. P.H. Verdier, J. Chem. Phys. 45, 2118 (1966).

    Google Scholar 

  24. C. Mischler, J. Baschnagel, K. Binder, Adv. Colloid Interface Sci. 94, 197 (2001).

    Article  Google Scholar 

  25. K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990).

    Article  Google Scholar 

  26. F. Varnik, PhD Thesis, University of Mainz, 2000, available from http://ArchiMeD.uni-mainz.de/pub/ 2001/0007/.

  27. H. Meyer, F. Müller-Plathe, J. Chem. Phys. 115, 7807 (2001)

    Article  Google Scholar 

  28. J. Buchholz, W. Paul, F. Varnik, K. Binder, J. Chem. Phys. 117, 7364 (2002).

    Article  Google Scholar 

  29. T. Kreer, J. Baschnagel, M. Müller, K. Binder, Macromolecules 34, 1105 (2001) and references therein.

    Article  Google Scholar 

  30. C. Mischler, J. Baschnagel, S. Dasgupta, K. Binder, Polymer 43, 467 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Varnik.

Additional information

Received: 1 January 2003, Published online: 21 October 2003

PACS:

61.20.Ja Computer simulation of liquid structure - 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 64.70.Pf Glass transitions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varnik, F., Baschnagel, J., Binder, K. et al. Confinement effects on the slow dynamics of a supercooled polymer melt: Rouse modes and the incoherent scattering function. Eur. Phys. J. E 12, 167–171 (2003). https://doi.org/10.1140/epje/i2003-10042-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10042-6

Keywords

Navigation