Skip to main content
Log in

Shape transformations of protein-like copolymer globules

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Shapes of globules formed by amphiphilic multi-block-copolymers in a selective solvent are considered theoretically. We focus on copolymers consisting mostly of insoluble H-units forming large core surrounded by a shell of soluble P-blocks. It is shown that the globule becomes non-spherical when the effective shell tension is low enough. The resultant shape depends on the shell bending energy: it is prolate if this energy is larger than the elastic energy of the core, and oblate in the opposite case. The central result is the prediction of the formation of a surface pattern of fingers accompanying or even preempting the shape transition mentioned above. We elucidate and discuss the following finger morphologies: 1) nearly spherical knob; 2) a necklace of spherical beads extending away from the surface; 3) mostly cylindrical fingers; 4) large thorn-like fingers. The first 3 morphologies develop at equilibrium as the shell area increases (or, equivalently, the shell tension decreases). Considering the relevant kinetical aspects we show that formation of fingers is a nucleation and growth process, and that the energy of their equilibrium nucleation is likely to be high. Therefore, the finger formation may be delayed, and may actually occur in the regime where the plain spherical surface is metastable. It is the last morphology (thorn-like fingers) that characterizes the metastable regimes when the finger formation is controlled by a high activation energy. The universal features of the above predictions inviting experimental tests are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.R. Khokhlov, P.G. Khalatur, Physica A 249, 253 (1998)

    Google Scholar 

  2. C.D. Sfatos, E.I. Shakhnovich, Phys. Rep. 288, 77 (1997).

    Article  Google Scholar 

  3. E.N. Govorun, V.A. Ivanov, A.R. Khokhlov, P.G. Khalatur, A.L. Borovinsky, A.Yu. Grosberg, Phys. Rev. E 64, R40903 (2001).

  4. E.N. Govorun, A.R. Khokhlov, A.N. Semenov, Eur. Phys. E 12, 255 (2003).

    Article  Google Scholar 

  5. A.N. Semenov, Macromolecules 37, 226 (2004).

    Article  Google Scholar 

  6. L.F. Zhang, A. Eisenberg, Science 268, 1728 (1995).

    Google Scholar 

  7. K. Yu, A. Eisenberg, Macromolecules 29, 6359 (1996)

    Article  Google Scholar 

  8. I.M. Lifshitz, Sov. Phys. JETP 28, 1280 (1969).

    Google Scholar 

  9. I.M. Lifshitz, A.Yu. Grosberg, A.R. Khokhlov, Rev. Mod. Phys. 50, 1280 (1978).

    Article  Google Scholar 

  10. A.Yu. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules, (AIP, New York, 1994).

  11. V.V. Vasilevskaya, A.A. Klochkov, A.A. Lazutin, Macromolecules 37, 5444 (2004).

    Article  Google Scholar 

  12. A.N. Semenov, Sov. Phys. JETP 61, 733 (1985).

    Google Scholar 

  13. W. Helfrich, Z. Naturforsch. 28c, 693 (1973).

    Google Scholar 

  14. R. Lipowsky, Nature 349, 475 (1991).

    Article  PubMed  Google Scholar 

  15. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon, Oxford, 1970).

  16. S.T. Milner, T.A. Witten, J. Phys. (Paris) 49, 1951 (1988).

    Google Scholar 

  17. H.J. Deuling, W.Z. Helfrich, J. Phys. (Paris) 37, 1335 (1976).

    Google Scholar 

  18. U. Seifert, K. Berndl, R. Lipowsky, Phys. Rev. A 44, 1182 (1991).

    Article  PubMed  Google Scholar 

  19. U. Seifert, Adv. Phys. 46, 13 (1997).

    Google Scholar 

  20. H.-G. Döbereiner, E. Evans, M. Kraus, U. Seifert, M. Wortis, Phys. Rev. E 55, 4458 (1997).

    Article  Google Scholar 

  21. K. Berndl, J. Kaes, R. Lipowsky, E. Sackmann, U. Seifert, Europhys. Lett. 13, 659 (1990).

    Google Scholar 

  22. D.R.M. Williams, P.A. Pincus, Europhys. Lett. 24, 29 (1993).

    Google Scholar 

  23. E. Evance, W. Rawicz, Phys. Rev. Lett. 64, 2094 (1990).

    Article  PubMed  Google Scholar 

  24. A.E. Likhtman, A.N. Semenov. Europhys. Lett. 51, 307 (2000).

    Article  Google Scholar 

  25. M.W. Matsen, J. Chem. Phys. 121, 1938 (2004).

    Article  PubMed  Google Scholar 

  26. E.B. Zhulina, M. Adam, I. LaRue, S.S. Sheiko, M. Rubinstein, to be published in Macromolecules (2005).

  27. V.V. Vasilevskaya, P.G. Khalatur, A.R. Khokhlov, Macromolecules 36, 10103 (2003).

    Article  Google Scholar 

  28. P.G. De Gennes, Adv. Colloid Interface Sci. 27, 189 (1987).

    Article  Google Scholar 

  29. E. Sulman, Appl. Catal. A 176, 75 (1999).

    Article  Google Scholar 

  30. S.T. Milner, T.A. Witten, M.E. Cates, Macromolecules 21, 2610 (1988).

    Article  Google Scholar 

  31. S.T. Milner, Science 251, 905 (1991).

    Google Scholar 

  32. A. Ajdari, L. Leibler, Macromolecules 24, 6803 (1991).

    Article  Google Scholar 

  33. S.F. Edwards, Proc. R. Soc. London 88, 265 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Semenov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khokhlov, A.R., Semenov, A.N. & Subbotin, A.V. Shape transformations of protein-like copolymer globules. Eur. Phys. J. E 17, 283–306 (2005). https://doi.org/10.1140/epje/i2005-10011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10011-1

PACS.

Navigation