Skip to main content
Log in

Comparison of the measured phase diagrams in the force-temperature plane for the unzipping of two different natural DNA sequences

  • Focus Point
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this work, we consider the critical force required to unzip two different naturally occurring sequences of double-stranded DNA (dsDNA) at temperatures ranging from 20 ° C to 50 °C, where one of the sequences has a 53% average guanine-cytosine (GC) content and the other has a 40% GC content. We demonstrate that the force required to separate the dsDNA of the 53% GC sequence into single-stranded DNA (ssDNA) is approximately 0.5 pN, or approximately 5% greater than the critical force required to unzip the 40% GC sequence at the same temperature. In the temperature range between 20 and 40 °C the measured critical forces correspond reasonably well to predictions based on a simple theoretical homopolymeric model, but at temperatures above 40 °C the measured critical forces are much smaller than the predicted forces. The correspondence between theory and experiment is not improved by using Monte Carlo simulations that consider the heteropolymeric nature of the sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.E. Roulet, U. Bockelmann, F. Heslot, Proc. Natl. Acad. Sci. U.S.A. 94, 11935 (1997).

    Article  ADS  Google Scholar 

  2. J.D. Weeks, J.B. Lucks, Y. Kafri, C. Danilowicz, D.R. Nelson, M. Prentiss, Biophys. J. 88, 2752 (2005).

    Article  Google Scholar 

  3. J. Santalucia jr., H.T. Allawi, P.A. Senviratne, Biochemistry 35, 3555 (1996).

    Article  Google Scholar 

  4. D.K. Lubensky, R. Nelson, Phys. Rev. E 65, 31917 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  5. S.M. Bhattacharjee, J. Phys. A 33, L423 (2000).

  6. E.A. Mukamel, E.I. Shakhnovich, Phys. Rev. E 66, 032901 (2002).

    Article  ADS  Google Scholar 

  7. S. Cocco, R. Monasson, J.F. Marko, Phys. Rev. E 66, 051914 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  8. P.M. Lam, J.C.S. Levy, H. Huang, Biopolymers, 73, 293 (2004).

  9. D. Marenduzzo, A. Trovato, A. Maritan, Phys. Rev. E 64, 031901 (2001).

    Article  ADS  Google Scholar 

  10. A.E. Allahverdyan, Zh.S. Gevorkian, C.K. Hu, M.C. Wu, Phys. Rev. E 69, 061908 (2004).

    Article  ADS  Google Scholar 

  11. J.Z. Chen, Phys. Rev. E 66, 031912 (2002).

    Article  ADS  Google Scholar 

  12. D.K. Lubensky, D.R. Nelson, Phys. Rev. Lett. 85, 1572 (2000).

    Article  ADS  Google Scholar 

  13. S. Cocco, R. Monasson, J. Marko, Eur. Phys. J. E 10, 153 (2003).

    Article  Google Scholar 

  14. U. Bockelmann, Ph. Thomen, B. Essevaz-Roulet, V. Viasnoff, F. Heslot, Biophys. J. 82, 1537 (2002).

    Google Scholar 

  15. U. Gerland, R. Bundschuh, T. Hwa, Biophys. J. 81, 1324 (2001).

    Google Scholar 

  16. J. Liphardt, B. Onoa, S.B. Smith, I. Tinoco jr., C. Bustamante, Science 292, 733 (2001).

    Article  ADS  Google Scholar 

  17. R. Blossey, E. Carlon, Phys. Rev. E 68, 061911 (2003).

    Article  ADS  Google Scholar 

  18. I. Rouzina, V.A. Bloomfield, Biophys J. 77, 3242 (1999).

    Article  Google Scholar 

  19. G.Altan-Bonnet, A. Libchaber, O. Krichevsky, Phys. Rev. Lett. 90, 138101 (2003).

    Article  ADS  Google Scholar 

  20. C. Danilowicz, V.W. Coljee, C. Bouzigues, D.K. Lubensky, D.R. Nelson, M. Prentiss, Proc. Natl. Acad. Sci. U.S.A. 100, 1694 (2003).

    Article  ADS  Google Scholar 

  21. C. Danilowicz, Y. Kafri, R.S. Conroy, V.W. Coljee, J. Weeks, M. Prentiss, Phys. Rev. Lett. 93, 078101 (2004).

    Article  ADS  Google Scholar 

  22. S. Nakano, M. Fujimoto, H. Hara, N. Sugimoto, Nucleic Acids Res. 27, 2957 (1999).

    Article  Google Scholar 

  23. R.D. Blake, S.G. Delcourt, Nucleic Acids Res. 26, 3323 (1998).

    Article  Google Scholar 

  24. M.N. Dessings, B. Maier, Y. Zhang, M. Peliti, D. Bensimon, V. Croquette, Phys. Rev. Lett. 89, 248102 (2002).

    Article  ADS  Google Scholar 

  25. A. Montanari, M. Mezard, Phys. Rev. Lett. 86, 2178 (2001).

    Article  ADS  Google Scholar 

  26. C. Bustamante, S.B. Smith, J. Liphardt, D. Smith, Curr. Opin. Struct. Biol. 10, 279 (2000).

    Article  Google Scholar 

  27. I. Rouzina, V.A. Bloomfield, Biophys. J., 77, 3242 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Prentiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.H., Danilowicz, C., Coljee, V.W. et al. Comparison of the measured phase diagrams in the force-temperature plane for the unzipping of two different natural DNA sequences. Eur. Phys. J. E 19, 339–344 (2006). https://doi.org/10.1140/epje/i2005-10051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10051-5

PACS.

Navigation