Skip to main content
Log in

MD simulation of concentrated polymer solutions: Structural relaxation near the glass transition

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We examine by molecular dynamics simulations the relaxation of polymer-solvent mixtures close to the glass transition. The simulations employ a coarse-grained model in which polymers are represented by bead-spring chains and solvent particles by monomers. The interaction parameters between polymer and solvent are adjusted such that mixing is favored. We find that the mixtures have one glass transition temperature T g or critical temperature T c of mode-coupling theory (MCT). Both T g and T c (> T g decrease with increasing solvent concentration \( \phi_{{{\rm S}}}^{}\). The decrease is linear for the concentrations studied (up to \( \phi_{{{\rm S}}}^{}\) = 25%. Above T c we explore the structure and relaxation of the polymer-solvent mixtures on cooling. We find that, if the polymer solution is compared to the pure polymer melt at the same T, local spatial correlations on the length scale of the first peak of the static structure factor S(q) are reduced. This difference between melt and solution is largely removed when comparing the S(q) of both systems at similar distance to the respective T c. Near T c we investigate dynamic correlation functions, such as the incoherent intermediate scattering function \( \phi_{q}^{{{\rm s}}}\)(t), mean-square displacements of the monomers and solvent particles, two non-Gaussian parameters, and the probability distribution P(ln r;t) of the logarithm of single-particle displacements. In accordance with MCT we find, for instance, that \( \phi_{q}^{{{\rm s}}}\)(t) obeys the time-temperature superposition principle and has \( \alpha\) relaxation times \( \tau_{q}^{{{\rm s}}}\) which are compatible with a power law increase close (but not too close) to T c. In divergence to MCT, however, the increase of \( \tau_{q}^{{{\rm s}}}\) depends on the wavelength q, small q values having weaker increase than large ones. This decoupling of local and large-length scale relaxation could be related to the emergence of dynamic heterogeneity at low T. In the time window of the \( \alpha\) relaxation an analysis of P(ln r;t) reveals a double-peak structure close to T c. The first peak correponds to “slow” particles (monomer or solvent) which have not moved much farther than 10% of their diameter in time t, whereas the second occurs at distances of the order of the particle diameter. These “fast” particles have succeeded in leaving their nearest-neighbor cage in time t. The simulation thus demonstrates that large fluctuations in particle mobility accompany the final structural relaxation of the cold polymer solution in the vicinity of the extrapolated T c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).

  2. G.B. McKenna, in Comprehensive Polymer Science, edited by C. Booth, C. Price, Vol. 2 (Pergamon, New York, 1986) pp. 311--362.

  3. More precisely, plasticization of the polymer means that the solvent does not only decrease $T_{\ab{g}}$, but also softens the polymer glass by reducing the elastic moduli ferry. Besides this normally encountered case, there are also systems in which the solvent “antiplasticizes” the polymer. That is, the solvent decreases $T_{\ab{g}}$, but increases the elastic moduli of the polymer glass. The origin of this antiplasticizing effect has recently been studied by simulations for both bulk systems and polymer films RigglemanEtal:PRL2006,RigglemanEtal:PRE2007.

  4. T.S. Chow, Macromolecules 13, 362 (1980).

  5. J.E.G. Lipson, S.T. Milner, J. Polym. Sci. Part B 44, 3528 (2006).

    Google Scholar 

  6. T.P. Lodge, T.C.B. McLeish, Macromolecules 33, 5278 (2000).

  7. G. Foffi, W. Götze, F. Sciortino, P. Tartaglia, T. Voigt\-mann, Phys. Rev. E 69, 011505 (2004).

  8. U.K. Rößler, H. Teichler, Phys. Rev. E 61, 394 (2000).

    Google Scholar 

  9. A.J. Moreno, J. Colmenero, Phys. Rev. E 74, 021409 (2006).

    Google Scholar 

  10. A.J. Moreno, J. Colmenero, J. Chem. Phys. 124, 184906 (2006).

    Google Scholar 

  11. A.J. Moreno, J. Colmenero, J. Phys.: Condens. Matter 19, 466112 (2007).

    Google Scholar 

  12. W. Götze, T. Voigtmann, Phys. Rev. E 67, 021502 (2003).

    Google Scholar 

  13. W.C.K. Poon, J. Phys.: Condens. Matter 14, R859 (2002).

  14. A.M. Puertas, M. Fuchs, M.E. Cates, Phys. Rev. Lett. 88, 098301 (2002).

    Google Scholar 

  15. K. Dawson, G. Foffi, M. Fuchs, W. Götze, F. Sciortino, M. Sperl, P. Tartaglia, T. Voigtmann, E. Zaccarelli, Phys. Rev. E 63, 011401 (2000).

    Google Scholar 

  16. W. Götze, J. Phys.: Condens. Matter 11, A1 (1999).

  17. W. Kob, J. Phys.: Condens. Matter 11, R85 (1999).

  18. K.S. Schweizer, Curr. Opin. Colloid Interface Sci. 12, 297 (2007).

  19. J. Baschnagel, F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005).

  20. J. Colmenero, A. Arbe, Soft Matter 3, 1474 (2007).

  21. R.A.L. Vallée, M. Van der Auweraer, W. Paul, K. Binder, Phys. Rev. Lett. 97, 217801 (2006).

    Google Scholar 

  22. R.A.L. Vallée, W. Paul, K. Binder, J. Chem. Phys. 127, 154903 (2007).

    Google Scholar 

  23. J.V. Heffernan, J. Budzien, A.T. Wilson, R.J. Baca, V.J. Aston, F. Avila, J.D. McCoy, D.B. Adolf, J. Chem. Phys. 126, 184904 (2007).

    Google Scholar 

  24. R.A. Riggleman, K. Yoshimoto, J.F. Douglas, J.J. de Pablo, Phys. Rev. Lett. 97, 045502 (2006).

    Google Scholar 

  25. R.A. Riggleman, J.F. Douglas, J.J. de Pablo, Phys. Rev. E 76, 011504 (2007).

    Google Scholar 

  26. S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci. B 44, 2951 (2006).

    Google Scholar 

  27. S. Peter, H. Meyer, J. Baschnagel, R. Seemann, J. Phys.: Condens. Matter 19, 205119 (2007).

    Google Scholar 

  28. S. Peter, S. Napolitano, H. Meyer, M. Wübbenhorst, J. Baschnagel, to be published in Macromolecules.

  29. K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990).

    Google Scholar 

  30. M. Pütz, K. Kremer, G.S. Grest, Europhys. Lett. 49, 735 (2000), see also the Comment and Reply in Europhys. Lett. 52, 719 (2000)

  31. K. Binder, J. Horbach, W. Kob, W. Paul, F. Varnik, J. Phys.: Condens. Matter 16, S429 (2004).

  32. T. Soddemann, B. Dünweg, K. Kremer, Phys. Rev. E 68, 046702 (2003).

    Google Scholar 

  33. J. Buchholz, W. Paul, F. Varnik, K. Binder, J. Chem. Phys. 117, 7364 (2002).

    Google Scholar 

  34. S.-H. Chong, M. Fuchs, Phys. Rev. Lett. 88, 185702 (2002).

    Google Scholar 

  35. S.-H. Chong, M. Aichele, H. Meyer, M. Fuchs, J. Baschnagel, Phys. Rev. E 76, 051806 (2007).

    Google Scholar 

  36. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, Oxford, 2003).

  37. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).

  38. E. Flenner, G. Szamel, Phys. Rev. E 72, 011205 (2005).

    Google Scholar 

  39. E. Flenner, G. Szamel, Phys. Rev. E 72, 031508 (2005).

    Google Scholar 

  40. W. Götze, Condens. Matter Phys. 1, 873 (1998).

  41. W. Götze, in Proceedings of the Les Houches Summer School of Theoretical Physics, Les Houches 1989, Session LI, edited by J.P. Hansen, D. Levesque, J. Zinn-Justin (North-Holland, Amsterdam, 1991) pp. 287--503.

  42. T. Franosch, M. Fuchs, W. Götze, M.R. Mayr, A.P. Singh, Phys. Rev. E 55, 7153 (1997).

    Google Scholar 

  43. M. Fuchs, W. Götze, M.R. Mayr, Phys. Rev. E 58, 3384 (1998).

    Google Scholar 

  44. A. Rinaldi, F. Sciortino, P. Tartaglia, Phys. Rev. E 63, 061210 (2001).

    Google Scholar 

  45. T. Voigtmann, A.M. Puertas, M. Fuchs, Phys. Rev. E 70, 061506 (2004).

    Google Scholar 

  46. W. Götze, T. Voigtmann, Phys. Rev. E 61, 4133 (2000).

    Google Scholar 

  47. C.Z.-W. Liu, I. Oppenheim, Physica A 235, 369 (1997).

    Google Scholar 

  48. M. Fuchs, I. Hofacker, A. Latz, Phys. Rev. A 45, 898 (1992).

    Google Scholar 

  49. M. Fuchs, J. Non-Cryst. Solids 172-174, 241 (1994).

  50. W. Kob, in Slow relaxations and nonequilibrium dynamics in condensed matter, edited by J.-L. Barrat, M. Feigelmann, J. Kurchan, J. Dalibard (EDP Sciences/Springer, Les Ulis/Berlin, 2003) pp. 201--269.

  51. P. Chaudhuri, L. Berthier, W. Kob, Phys. Rev. Lett. 99, 060604 (2007).

    Google Scholar 

  52. H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999).

    Google Scholar 

  53. M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).

    Google Scholar 

  54. S.C. Glotzer, J. Non-Cryst. Solids 274, 342 (2000).

  55. R. Richert, J. Phys.: Condens. Matter 14, R703 (2002).

  56. L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki, D.R. Reichman, J. Chem. Phys. 126, 184503 (2007).

    Google Scholar 

  57. L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki, D.R. Reichman, J. Chem. Phys. 126, 184504 (2007).

    Google Scholar 

  58. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986).

  59. A.M. Puertas, M. Fuchs, M.E. Cates, J. Chem. Phys. 121 (2004).

  60. M. Aichele, Y. Gebremichael, F.W. Starr, J. Baschnagel, S.C. Glotzer, J. Chem. Phys. 119, 5290 (2003), publisher’s note: J. Chem. Phys. 120, 6798 (2004).

  61. K. Binder, M. Müller, P. Virnau, L.G. MacDowell, Adv. Polym. Sci. 173, 1 (2005).

    Google Scholar 

  62. M. Müller, G.D. Smith, J. Polym. Sci.: Part B 43, 934 (2005).

  63. P. Virnau, M. Müller, L. Gonzalez MacDowell, K. Binder, Comput. Phys. Commun. 147, 378 (2002).

  64. P. Virnau, M. Müller, L.G. MacDowell, K. Binder, J. Chem. Phys. 121, 2169 (2004).

    Google Scholar 

  65. L. Yelash, M. Müller, W. Paul, K. Binder, J. Chem. Phys. 123, 14908 (2005).

    Google Scholar 

  66. M. de Podesta, Understanding the Properties of Matter (CRC Press, 2002).

  67. D. Long, F. Lequeux, Eur. Phys. J. E 4, 371 (2001).

    Google Scholar 

  68. L. González MacDowell, M. Müller, C. Vega, K. Binder, J. Chem. Phys. 113, 419 (2002).

    Google Scholar 

  69. K.S. Schweizer, E.J. Saltzman, J. Chem. Phys. 121, 1984 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Baschnagel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peter, S., Meyer, H. & Baschnagel, J. MD simulation of concentrated polymer solutions: Structural relaxation near the glass transition. Eur. Phys. J. E 28, 147–158 (2009). https://doi.org/10.1140/epje/i2008-10372-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10372-9

PACS

Navigation