Skip to main content
Log in

Depletion of ideal polymer chains near a spherical colloid particle beyond the Dirichlet boundary conditions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We reconsider the depletion interaction of an ideal polymer chain, characterized by the gyration radius RG and bond length a , and an impenetrable spherical colloid particle of radius R . Forbidding the polymer-colloid penetration explicitly (by the use of Mayer functions) without any other requirement we derive and solve analytically an integral equation for the chain partition function of a long ideal polymer chain for the spherical geometry. We find that the correction to the solution of the Dirichlet problem depends on the ratios R/R G and R/a . The correction vanishes for the continuous chain model (i.e. in the limit R/R G → 0 and R/a → ∞ but stays finite (even for an infinite chain) for the discrete chain model. The correction can become substantial in the case of nano-colloids (the so-called protein limit).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954)

    ADS  Google Scholar 

  2. J.F. Joanny, L. Leibler, P.G. De Gennes, J. Polym. Sci. Polym. Phys. 17, 1073 (1979)

    ADS  Google Scholar 

  3. W.C.K. Poon, J. Phys.: Condens. Matter 14, R859 (2002)

    Article  ADS  Google Scholar 

  4. P.G. de Gennes, C. R. Acad. Sci. Paris, Ser. B 288, 359 (1979)

    Google Scholar 

  5. E. Eisenriegler, A. Hanke, S. Dietrich, Phys. Rev. E 54, 1134 (1996)

    Article  ADS  Google Scholar 

  6. A. Hanke, E. Eisenriegler, S. Dietrich, Phys. Rev. E 59, 6853 (1999)

    Article  ADS  Google Scholar 

  7. E. Eisenriegler, J. Chem. Phys. 113, 5091 (2000)

    Article  ADS  Google Scholar 

  8. I.Y. Erukhimovich, A. Johner, J.F. Joanny, Eur. Phys. J. E 27, 435 (2008)

    Article  Google Scholar 

  9. M.W. Matsen, J.U. Kim, A.E. Likhtman, Eur. Phys. J. E 29, 107 (2009)

    Article  Google Scholar 

  10. J.R. Henderson, in Fluid Interfacial Phenomena, edited by C.A. Croxton (Wiley, New York, 1986)

  11. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, 2006)

  12. J.L. Lebowitz, Phys. Fluids 3, 64 (1960)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. E.M. Blokhuis, J. Kuipers, J. Chem. Phys. 126, 054702 (2007)

    Article  ADS  Google Scholar 

  14. K.J. Mutch, J.S. van Duijneveldt, J. Eastoe, Soft Matter 3, 155 (2007)

    Article  Google Scholar 

  15. M.D. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986)

  16. G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation (Springer Verlag, Berlin, 1974)

  17. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, 2nd edition, Course Theor. Phys. 8 (Pergamon Press, 1984)

  18. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1978)

  19. A.Yu. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules (AIP Press, 2002)

  20. T. Odijk, Physica A 278, 347 (2000)

    Article  ADS  Google Scholar 

  21. K.M. Jansons, C.G. Phillips, J. Colloid Interface Sci. 137, 75 (1990)

    Article  Google Scholar 

  22. A.R. Khokhlov, S.A. Nechaev, Phys. Lett. A 112, 156 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Fuchs, K. Schweizer, Europhys. Lett. 51, 621 (2000)

    Article  ADS  Google Scholar 

  24. In fact, the diagram expansion of the integral (R1) contains some fictitious loop diagrams corresponding to cycled polymers with all possible degrees of polymerization. To exclude these diagrams, one should make use of the famous de Gennes $n\rightarrow 0$ trick PGGbook,deGennes72, i.e. consider the field $\phi(\mathbf{r})$ as an $n$-component vector field and set $n=0$ in the final results. However, for the Gaussian integral (R1) the fictitious loop diagrams appearing in the numerator and denominator of (R1) precisely cancel each other. It is worth noticing that it is this property of the Gaussian integral which enables one to disregard the loop diagrams within the mean-field (sadle-point) and random phase (Gaussian vicinity of the saddle-point) approximations. So, in this paper we also disregard the loop diagrams and, thus, consider the field $\phi(\mathbf{r})$ as a scalar one

  25. P.G. de Gennes, Phys. Lett. A 38, 339 (1972)

    Article  ADS  Google Scholar 

  26. L.D. Landau, E.M. Lifshitz, Statistical Physics. Part 1, 3rd edition, Course Theor. Phys. 5 (Pergamon Press, 1977)

  27. T. Kramer, R. Schweins, K. Huber, Macromolecules 38, 9783 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Erukhimovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erukhimovich, I., Johner, A. & Joanny, J.F. Depletion of ideal polymer chains near a spherical colloid particle beyond the Dirichlet boundary conditions. Eur. Phys. J. E 31, 115–124 (2010). https://doi.org/10.1140/epje/i2010-10568-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10568-4

Keywords

Navigation