Skip to main content
Log in

Non-extensivity of the chemical potential of polymer melts

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Following Flory’s ideality hypothesis, the chemical potential of a test chain of length n immersed into a dense solution of chemically identical polymers of length distribution P(N) is extensive in n . We argue that an additional contribution \( \delta\) \( \mu_{{{\rm c}}}^{}\)(n) ∼ +1/\( \rho\) \( \sqrt{{n}}\) arises (\( \rho\) being the monomer density) for all P(N) if n ≪ 〈N〉 which can be traced back to the overall incompressibility of the solution leading to a long-range repulsion between monomers. Focusing on Flory-distributed melts, we obtain \( \delta\) \( \mu_{{{\rm c}}}^{}\)(n) \( \approx\) (1 - 2n/〈N〉)/\( \rho\) \( \sqrt{{n}}\) for n ≪ 〈N2 , hence, \( \delta\) \( \mu_{{{\rm c}}}^{}\)(n) \( \approx\) -1/\( \rho\) \( \sqrt{{n}}\) if n is similar to the typical length of the bath 〈N〉 . Similar results are obtained for monodisperse solutions. Our perturbation calculations are checked numerically by analyzing the annealed length distribution P(N) of linear equilibrium polymers generated by Monte Carlo simulation of the bond fluctuation model. As predicted we find, e.g., the non-exponentiality parameter K p \( \equiv\) 1 - 〈N p〉/p!〈Np to decay as K p \( \approx\) 1/\( \sqrt{{\langle N \rangle }}\) for all moments p of the distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979)

  2. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)

  3. L. Schäfer, Excluded Volume Effects in Polymer Solutions (Springer-Verlag, New York, 1999)

  4. We suppose throughout this paper that $\pchain$ is a realistic polymer length distribution which is not too broad. All moments $\Npav^{1/p}$ exist and are of the same order. Obviously, all moments of monodisperse melts of length $N$ become $\Npav^{1/p} = N$

  5. M. Cates, S. Candau, J. Phys.: Condens. Matter 2, 6869 (1990)

    Article  ADS  Google Scholar 

  6. J.P. Wittmer, A. Milchev, M.E. Cates, J. Chem. Phys. 109, 834 (1998)

    Article  ADS  Google Scholar 

  7. The chain length distribution is obtained by minimizing a Flory-Huggins free-energy functional equation* f[] = _N (() + N + E + (N)), equation* with respect to the density $\rhochain = \rho \pchain/\Nav$ of chains of length $N$. The first term on the right is the usual translational entropy. The second term entails a Lagrange multiplier which fixes the total monomer density $\rho = \sum_N N \rhochain$. All contributions to the chemical potential of the chain $\muchain$ which are linear in $N$ can be adsorbed within the Lagrange multiplier. The scission energy $E$ characterizes the enthalpic free-energy cost for breaking a chain bond. The most crucial last term encodes the remaining non-linear contribution $\dmuchain(N)$ to the chemical potential $\muchain$ which has to be paid for creating two new chain ends. A rigorously Flory-distributed length distribution implies thus $\dmuchain(N) = \tx{const}$

  8. I. Yerukhimovich, V. Irzhak, V. Rostiashvili, Polym. Sci. USSR 18, 1682 (1976)

    Article  Google Scholar 

  9. I. Yerukhimovich, Polym. Sci. USSR 19, 2743 (1977)

    Article  Google Scholar 

  10. E. Nikomarov, S. Obukhov, Sov. Phys. JETP 53, 328 (1981)

    Google Scholar 

  11. J.P. Wittmer, H. Meyer, J. Baschnagel, A. Johner, S.P. Obukhov, L. Mattioni, M. Müller, A.N. Semenov, Phys. Rev. Lett. 93, 147801 (2004)

    Article  ADS  Google Scholar 

  12. J.P. Wittmer, P. Beckrich, A. Johner, A.N. Semenov, S.P. Obukhov, H. Meyer, J. Baschnagel, Europhys. Lett. 77, 56003 (2007)

    Article  ADS  Google Scholar 

  13. P. Beckrich, A. Johner, A.N. Semenov, S.P. Obukhov, H.C. Benoît, J.P. Wittmer, Macromolecules 40, 3805 (2007)

    Article  ADS  Google Scholar 

  14. J.P. Wittmer, P. Beckrich, H. Meyer, A. Cavallo, A. Johner, J. Baschnagel, Phys. Rev. E 76, 011803 (2007)

    Article  ADS  Google Scholar 

  15. H. Meyer, J.P. Wittmer, T. Kreer, P. Beckrich, A. Johner, J. Farago, J. Baschnagel, Eur. Phys. J. E 26, 25 (2008)

    Article  Google Scholar 

  16. J.P. Wittmer, A. Cavallo, T. Kreer, J. Baschnagel, A. Johner, J. Chem. Phys. 131, 064901 (2009)

    Article  ADS  Google Scholar 

  17. J.P. Wittmer, A. Johner, S.P. Obukhov, H. Meyer, A. Cavallo, J. Baschnagel, Macromolecules 43, 1621 (2010)

    Article  ADS  Google Scholar 

  18. A.N. Semenov, A. Johner, Eur. Phys. J. E 12, 469 (2003)

    Article  Google Scholar 

  19. A. Cavallo, M. Müller, J.P. Wittmer, A. Johner, J. Phys.: Condens. Matter 17, S1697 (2005)

    Article  ADS  Google Scholar 

  20. J.P. Wittmer, P. Beckrich, F. Crevel, C.C. Huang, A. Cavallo, T. Kreer, H. Meyer, Comput. Phys. Commun. 177, 146 (2007)

    Article  ADS  Google Scholar 

  21. I. Carmesin, K. Kremer, Macromolecules 21, 2819 (1988)

    Article  ADS  Google Scholar 

  22. A.N. Semenov, S.P. Obukhov, J. Phys.: Condens. Matter 17, 1747 (2005)

    Article  ADS  Google Scholar 

  23. D. Wu, G. Fredrickson, J.P. Carton, A. Ajdari, L. Leibler, J. Polym. Sci. Part B: Polym. Phys. 33, 2373 (1995)

    Article  ADS  Google Scholar 

  24. Strictly speaking, we refer here and below to the compressibility of asymptotically long chains or, equivalently, to the excess contribution $\gex$ of the compressibility given by $1/\gex(\rho) = 1/g(\rho,N) - 1/N$ GHF95,WCK09. The difference is irrelevant for the large chains described in this paper.

  25. The chemical potential of a chain does depend on the length distribution of the melt, eq. (eq_reg3dRSb). For infinite macroscopically homogeneous systems it is independent, however, of whether this distribution is annealed or quenched, i.e. if it is allowed to fluctuate or not. This follows from the well-known behavior of fluctuations of extensive parameters in macroscopic systems: the relative fluctuations vanish as $1/\sqrt{V}$ as the total volume $V\rightarrow \infty$. The latter limit is taken first in our calculations, i.e. we consider an infinite number of (annealed or quenched) chains. The large-$N$ limit is then taken afterwards to increase the range of the scale-free effective interaction potential, eq. (eq_veff_q2)

  26. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964)

  27. D. Frenkel, B. Smit, Understanding Molecular Simulation -- From Algorithms to Applications, 2nd edition (Academic Press, San Diego, 2002)

  28. M. Müller, W. Paul, J. Chem. Phys. 100, 719 (1994)

    Article  ADS  Google Scholar 

  29. H. Deutsch, K. Binder, J. Chem. Phys. 94, 2294 (1991)

    Article  ADS  Google Scholar 

  30. C.C. Huang, H. Xu, F. Crevel, J. Wittmer, J.P. Ryckaert, Reaction kinetics of coarse-grained equilibrium polymers: a Brownian Study, in Computer Simulations in Condensed Matter: from Materials to Chemical Biology, Springer Lect. Notes Phys. 704, 379 (2006)

  31. D. Shirvanyants, S. Panyukov, Q. Liao, M. Rubinstein, Macromolecules 1, 1475 (2008)

    Article  ADS  Google Scholar 

  32. K. Shimomura, H. Nakanishi, N. Mitarai, Phys. Rev. E 80, 051804 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Wittmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittmer, J.P., Johner, A., Cavallo, A. et al. Non-extensivity of the chemical potential of polymer melts. Eur. Phys. J. E 31, 229–237 (2010). https://doi.org/10.1140/epje/i2010-10571-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10571-9

Keywords

Navigation