Skip to main content
Log in

A schematic model for molecular affinity and binding with Ising variables

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

After discussing the relevance of statistical physics in molecular recognition processes, we present a schematic model for ligand-receptor association based on an Ising chain. We discuss the possible behaviors of the affinity when the stiffness of the ligand increases. We also consider the case of flexible receptors. A variety of interesting behaviors is obtained, including some affinity modulation upon bond hardening or softening. The affinity of a ligand for its receptor is shown to depend on the details of its rigidity profile, and we question the possibility of encoding information in the rigidities as well as in the shape. An exhaustive study of the selectivity of patterns with length n < 8 is carried out. Connection with other spin models, in particular spin glasses is mentioned in the conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Alberts, A. Jonhson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland Science, Taylor and Francis, 2002)

  2. D. Koshland, Proc. Natl. Acad. Sci. U.S.A. 44, 98 (1958)

    Article  ADS  Google Scholar 

  3. H. Berman et al., Nucleic Acid Res. 28, 235 (2000) http://www.rcsb.org/pdb/home

    Article  ADS  Google Scholar 

  4. H. Berman, K. Henrick, H. Nakamura, Nature Struct. Biol. 10, 980 (2003) http://www.wwpdb.org

    Article  Google Scholar 

  5. J.N. Israelachvili, Intermolecular and Surface Forces (Elsevier, 1992)

  6. D. Leckband, J. Israelachvili, Q. Rev. Biophys. 34, 105 (2001)

    Article  Google Scholar 

  7. M.K. Gilson, H.X. Zhou, Annu. Rev. Biophys. Biomol. Struct. 36, 21 (2007)

    Article  Google Scholar 

  8. A. Kosmrlj, A.K. Jha, E.S. Huseby, M. Kardar, A.K. Chakraborty, Proc. Natl. Acad. Sci. U.S.A. 105, 16671 (2008)

    Article  ADS  Google Scholar 

  9. M. Lewis, C. R. Biologie 328, 521 (2005)

    Article  Google Scholar 

  10. R.J. Hawkins, T.C.B. McLeish, Phys. Rev. Lett. 93, 098104 (2004)

    Article  ADS  Google Scholar 

  11. H. Behringer, A. Degenhard, F. Schmid, Phys. Rev. Lett. 97, 128101 (2006)

    Article  ADS  Google Scholar 

  12. H. Behringer, A. Degenhard, F. Schmid, Phys. Rev. E 76, 031914 (2007)

    Article  ADS  Google Scholar 

  13. H. Behringer, F. Schmid, Phys. Rev. E 78, 031903 (2008)

    Article  ADS  Google Scholar 

  14. M.K. Gilson, J.A. Given, B.L. Bush, J. McCammon, Biophys. J. 72, 1047 (1997)

    Article  ADS  Google Scholar 

  15. M. Mihailescu, M.K. Gilson, Biophys. J. 87, 23 (2004)

    Article  ADS  Google Scholar 

  16. J. Janin, Proteins: Struct. Funct. Genet. 25, 438 (1996)

    Article  Google Scholar 

  17. S. Edwards, P. Anderson, J. Phys. F: Metal Phys. 5, 965 (1975)

    Article  ADS  Google Scholar 

  18. M. Mézard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond., Vol. 9 (World Scientific, 1987)

  19. R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis (Cambridge University Press, 1998)

  20. J.M. Lehn, Supramolecular Chemistry: Concepts and Perspectives (Wiley-VCH, 1995)

  21. H. Leff, A.F. Rex (Editors), Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (Institute of Physics Publishing, 2003)

  22. G.A. Jones, M.J. Jones, Information and Coding Theory, Springer Undergraduate Mathematics Series (Springer, 2000)

  23. T. Bogner, A. Degenhard, F. Schmid, Phys. Rev. Lett. 93, 268108 (2004)

    Article  ADS  Google Scholar 

  24. S. Sacquin-Mora, E. Laforet, R. Lavery, Proteins: Struct. Funct. Bioinform. 67, 350 (2007)

    Article  Google Scholar 

  25. N. Sourlas, Nature 339, 693 (1989)

    Article  ADS  Google Scholar 

  26. N. Sourlas, Physica A 302, 14 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. H. Nishimori, Statistical Physics of Spin Glasses and Information Processing. An Introduction, International Series of Monographs in Physics 111 (Clarendon Press Oxford, 2001)

  28. R. Monasson, Phys. Rev. Lett. 75, 2847 (1995)

    Article  ADS  Google Scholar 

  29. M. Blatt, S. Wiseman, E. Domany, Phys. Rev. Lett. 76, 3251 (1996)

    Article  ADS  Google Scholar 

  30. S. Wiseman, M. Blatt, E. Domany, Phys. Rev. E 57, 3767 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Thalmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thalmann, F. A schematic model for molecular affinity and binding with Ising variables. Eur. Phys. J. E 31, 441–454 (2010). https://doi.org/10.1140/epje/i2010-10600-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10600-9

Keywords

Navigation