Skip to main content
Log in

Polymer-brush lubrication in the limit of strong compression

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

By means of molecular dynamics simulations we demonstrate power laws for macroscopic transport properties of strongly compressed polymer-brush bilayers to stationary shear motion beyond the Newtonian response. The corresponding exponents are derived from a recently developed scaling theory, where the interpenetration between the brushes is taken as the relevant length scale. This allows to predict the dependence of the critical shear rate, which separates linear and non-linear behavior, on compression and molecular parameters of the bilayer. We present scaling plots for chain extension (R , viscosity (\( \eta\) , and shear force (F over a wide range of Weissenberg numbers, W . In agreement with our theory, the simulation reveals simple power laws, RW 0.53 , \( \eta\)W -0.46 , and FW 0.54 , for the non-Newtonian regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Klein, D. Perahia, S. Warburg, Nature 352, 143 (1991)

    Article  ADS  Google Scholar 

  2. J. Klein, Annu. Rev. Mater. Sci. 26, 581 (1996)

    Article  ADS  Google Scholar 

  3. P.A. Schorr, T.C.B. Kwan, S.M. Kilbey II, E.S.G. Shaqfey, M. Tirrell, Macromolecules 36, 389 (2003)

    Article  ADS  Google Scholar 

  4. J. Klein, Proc. IMechE J. 220, 691 (2006)

    Article  Google Scholar 

  5. J. Klein, Science 323, 47 (2009)

    Article  Google Scholar 

  6. M. Murat, G.S. Grest, Phys. Rev. Lett. 63, 1074 (1989)

    Article  ADS  Google Scholar 

  7. P.-Y. Lai, K. Binder, J. Chem. Phys. 98, 2366 (1993)

    Article  ADS  Google Scholar 

  8. P.S. Doyle, E.S.G. Shaqfeh, A.P. Gast, Phys. Rev. Lett. 78, 1182 (1997)

    Article  ADS  Google Scholar 

  9. P.S. Doyle, E.S.G. Shaqfeh, A.P. Gast, Macromolecules 31, 5474 (1998)

    Article  ADS  Google Scholar 

  10. T. Kreer, K. Binder, M.H. Müser, Langmuir 19, 7551 (2003)

    Article  Google Scholar 

  11. F. Goujon, P. Malfreyt, D.J. Tildesley, Chem. Phys. Chem. 5, 457 (2004)

    Google Scholar 

  12. F. Goujon, P. Malfreyt, D.J. Tildesley, Mol. Phys. 103, 2675 (2005)

    Article  ADS  Google Scholar 

  13. F. Goujon, Dissertation (Clermont-Ferrand, 2003)

  14. C. Pastorino, T. Kreer, M. Müller, K. Binder, Phys. Rev. E 76, 026706 (2007)

    Article  ADS  Google Scholar 

  15. A. Galuschko, L. Spirin, T. Kreer, A. Johner, C. Pastorino, J. Wittmer, J. Baschnagel, Langmuir 26, 6418 (2010)

    Article  Google Scholar 

  16. J.-F. Joanny, Langmuir 8, 989 (1992)

    Article  Google Scholar 

  17. F. Clement, T. Charitat, A. Johner, J.-F. Joanny, Europhys. Lett. 54, 65 (2001)

    Article  ADS  Google Scholar 

  18. M. Rubinstein, S.P. Obukhov, Macromolecules 26, 1740 (1993)

    Article  ADS  Google Scholar 

  19. T. Moro, Y. Takatori, K. Ishihara, T. Konno, Y. Takigawa, T. Matsushita, U. Chung, K. Nakamura, H. Kawaguchi, Nat. Mater. 3, 829 (2004)

    Article  ADS  Google Scholar 

  20. R.C. Advincula, W.J. Brittain, K.C. Caster, J. Rühe (Editors), Polymer Brushes (Wiley, 2004)

  21. R. Everaers, S.K. Sukumaran, G.S. Grest, C. Svaneborg, A. Sivasubramanian, K. Kremer, Science 303, 823 (2004)

    Article  ADS  Google Scholar 

  22. We anticipate that the entanglement length for directed chains in a brush is expected to be larger than for bulk systems

  23. K. Kremer, G.S. Grest, I. Carmesin, Phys. Rev. Lett. 61, 566 (1988)

    Article  ADS  Google Scholar 

  24. P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19, 155 (1992)

    Article  ADS  Google Scholar 

  25. P. Espanol, P. Warren, Europhys. Lett. 30, 191 (1995)

    Article  ADS  Google Scholar 

  26. A detailed discussion about the performance of the DPD thermostat in non-equilibrium MD simulations of polymer brushes can be found in ref. claudio and in P. Virnau, K. Binder, H. Heinz, T. Kreer, M. Müller, Encyclopedia of polymer blends Vol. I: Foundamentals, edited by A.I. Isayev (Wiley-VCH, Weinheim, 2010)

  27. All lengths are measured in Lennard-Jones units

  28. T. Kreer, S. Metzger, M. Müller, K. Binder, J. Baschnagel, J. Chem. Phys. 120, 4012 (2004)

    Article  ADS  Google Scholar 

  29. T.A. Witten, L. Leibler, P.A. Pincus, Macromolecules 23, 824 (1990)

    Article  ADS  Google Scholar 

  30. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979)

  31. In this context, the limit of ``strong'' compression does not imply melt conditions. Instead, we refer to a semidilute bilayer with a uniform monomer density profile

  32. In fact, previous investigations kreer, where hydrodynamic interactions were strongly screened due to the application of a different (Langevin) thermostat, report a somewhat larger exponent, $R^2/R^2_0 \sim W^{0.6}$. This can be understood from our approach by reformulating eq. (Fwet.eq) for ``dry'' bilayers. Without hydrodynamic interactions, the force per area in linear response is proportional to the number of monomers in the interpenetration zone, $F/A \sim cL\dot{\gamma} D$. Repeating our analysis we obtain $R^2/R^2_0 \sim W^{0.65}$, $F/F(W = 1)$ $\sim W^{0.73}$, $\eta/\eta_0 \sim W^{-0.27}$ for the non-Newtonian response of semidilute, dry bilayers. Note that these exponents clearly differ from the present approach giving rise to the assertion that hydrodynamic interactions are represented in our simulations for all solvent models used. Dry bilayers, as modeled in ref. kreer, are physically much less relevant, of course

  33. Note that experimental shear rates are usually much smaller than in the simulation. On the other hand, simulations typically work with much smaller chain lengths. Equation (tau.eq) suggests that both effects partially cancel, such that the related Weissenberg numbers become comparable

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kreer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spirin, L., Galuschko, A., Kreer, T. et al. Polymer-brush lubrication in the limit of strong compression. Eur. Phys. J. E 33, 307–311 (2010). https://doi.org/10.1140/epje/i2010-10674-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10674-3

Keywords

Navigation