Skip to main content
Log in

Dipoles in thin sheets

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A flat elastic sheet may contain pointlike conical singularities that carry a metrical “charge” of Gaussian curvature. Adding such elementary defects to a sheet allows one to make many shapes, in a manner broadly analogous to the familiar multipole construction in electrostatics. However, here the underlying field theory is non-linear, and superposition of intrinsic defects is non-trivial as it must respect the immersion of the resulting surface in three dimensions. We consider a “charge-neutral” dipole composed of two conical singularities of opposite sign. Unlike the relatively simple electrostatic case, here there are two distinct stable minima and an infinity of unstable equilibria. We determine the shapes of the minima and evaluate their energies in the thin-sheet regime where bending dominates over stretching. Our predictions are in surprisingly good agreement with experiments on paper sheets.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1975).

  2. S. Kim, S.J. Karrila, Microhydrodynamics (Dover, New York, 2005).

  3. P.G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992).

  4. T.A. Witten, Rev. Mod. Phys. 79, 643 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. J. Amirbayat, J.W.S. Hearle, Int. J. Mech. Sci. 28, 339 (1986).

    Article  Google Scholar 

  6. J. Amirbayat, J.W.S. Hearle, Int. J. Mech. Sci. 28, 359 (1986).

    Article  Google Scholar 

  7. S. Chaieb, F. Melo, Phys. Rev. E 60, 6091 (1999).

    Article  ADS  Google Scholar 

  8. T. Liang, T.A. Witten, Phys. Rev. E 71, 016612 (2005).

    Article  ADS  Google Scholar 

  9. T. Liang, Phys. Rev. E 77, 056602 (2008).

    Article  ADS  Google Scholar 

  10. M.M. Müller, M. Ben Amar, J. Guven, Phys. Rev. Lett. 101, 156104 (2008).

    Article  ADS  Google Scholar 

  11. J. Guven, M.M. Müller, P. Vázquez-Montejo, J. Phys. A 45, 015203 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  12. H.S. Seung, D.R. Nelson, Phys. Rev. A 38, 1005 (1988).

    Article  ADS  Google Scholar 

  13. S. Chaieb, F. Melo, Phys. Rev. E 56, 4736 (1997).

    Article  ADS  Google Scholar 

  14. T. Mora, A. Boudaoud, Europhys. Lett. 59, 41 (2002).

    Article  ADS  Google Scholar 

  15. E. Hamm, B. Roman, F. Melo, Phys. Rev. E 70, 026607 (2004).

    Article  ADS  Google Scholar 

  16. M. Das, A. Vaziri, A. Kudrolli, L. Mahadevan, Phys. Rev. Lett. 98, 014301 (2007).

    Article  ADS  Google Scholar 

  17. L. Walsh, R. Meza, E. Hamm, J. Phys. D 44, 232002 (2011).

    Article  ADS  Google Scholar 

  18. J. Dervaux, M. Ben Amar, Phys. Rev. Lett. 101, 068101 (2008).

    Article  ADS  Google Scholar 

  19. K.A. Serikawa, D.F. Mandoli, Planta 207, 96 (1998).

    Article  Google Scholar 

  20. Y. Klein, E. Efrati, E. Sharon, Science 315, 1116 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. J. Kim et al., Science 335, 1201 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  22. J.D. Eshelby, Proc. R. Soc. London, Ser. A 241, 376 (1957).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. T.A. Witten, H. Li, Europhys. Lett. 23, 51 (1993).

    Article  ADS  Google Scholar 

  24. M. Ben Amar, Y. Pomeau, Proc. R. Soc. London, Ser. A 453, 729 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Chaieb, F. Melo, J.-C. Géminard, Phys. Rev. Lett. 80, 2354 (1998).

    Article  ADS  Google Scholar 

  26. E. Cerda, L. Mahadevan, Phys. Rev. Lett. 80, 2358 (1998).

    Article  ADS  Google Scholar 

  27. J. Guven, M.M. Müller, J. Phys. A 41, 055203 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Abramowitz, I.A. Stegun (Editors), Handbook of Mathematical Functions, 9th edn (Dover, New York, 1970).

  29. N. Stoop et al., Phys. Rev. Lett. 105, 068101 (2010).

    Article  ADS  Google Scholar 

  30. T.A. Witten, J. Phys. Chem. B 113, 3738 (2009).

    Article  Google Scholar 

  31. J. Guven, P. Vázquez-Montejo, Phys. Rev. E 85, 026603 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Michael Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guven, J., Hanna, J.A., Kahraman, O. et al. Dipoles in thin sheets. Eur. Phys. J. E 36, 106 (2013). https://doi.org/10.1140/epje/i2013-13106-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13106-0

Keywords

Navigation