Skip to main content
Log in

Electro-hydrodynamic instability of stressed viscoelastic polymer films

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study the stability of a viscoelastic thin polymer film under two destabilization factors: the application of an electric field normal to the surface --as in typical electro-hydrodynamic destabilization experiments- and the presence of a frozen-in internal residual stress, stemming from the preparation process of the film, typically spin-coating. At the film-substrate interface we consider a general boundary condition, containing perfect gliding on slippery substrates, as well as perfect sticking of the film to the substrate as limiting cases. We show that the interplay of the two sources of stress, the viscoelasticity and the boundary condition, leads to a rich behavior, especially as far as the fastest growing wave number (or wavelength) is concerned. The latter determines the initial growth of the instability, and often also the final pattern obtained in small capacitor gaps, and is the main experimental observable.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Reiter, Adv. Polym. Sci. 252, 29 (2013).

    Article  MathSciNet  Google Scholar 

  2. R. Blossey, Thin Liquid Films: Dewetting and Polymer Flow (Springer, Dordrecht, 2012).

  3. S.G. Croll, J. Appl. Polym. Sci. 23, 847 (1979).

    Article  Google Scholar 

  4. K. Norrman, A. Ghanbari-Siahkali, N.B. Larsen, Annu. Rep. Prog. Chem., Sect. C 101, 174 (2005).

    Article  Google Scholar 

  5. G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphaël, Nat. Mater. 4, 754 (2005).

    Article  ADS  Google Scholar 

  6. H. Bodiguel, C. Fretigny, Eur. Phys. J. E 19, 185 (2006).

    Article  Google Scholar 

  7. D.R. Barbero, U. Steiner, Phys. Rev. Lett. 102, 248303 (2009).

    Article  ADS  Google Scholar 

  8. J.Y. Chung, T.Q. Chastek, M.J. Fasolka, H.W. Ro, C.M. Stafford, ACS Nano 3, 844 (2009).

    Article  Google Scholar 

  9. K. Thomas, U. Steiner, Soft Matter 7, 7839 (2011).

    Article  ADS  Google Scholar 

  10. M. Chowdhury, P. Freyberg, F. Ziebert, A.C.M. Yang, U. Steiner, G. Reiter, Phys. Rev. Lett. 109, 136102 (2012).

    Article  ADS  Google Scholar 

  11. T. Vilmin, E. Raphaël, Eur. Phys. J. E 21, 161 (2006).

    Article  Google Scholar 

  12. F. Ziebert, E. Raphaël, Phys. Rev. E 79, 031605 (2009).

    Article  ADS  Google Scholar 

  13. E. Schäffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner, Europhys. Lett. 53, 518 (2001).

    Article  ADS  Google Scholar 

  14. J. Sarkar, A. Sharma, V. Shenoy, Phys. Rev. E 77, 031604 (2008).

    Article  ADS  Google Scholar 

  15. G. Tomar, V. Shankar, A. Sharma, G. Biswas, J. Non-Newtonian Fluid Mech. 143, 120 (2007).

    Article  MATH  Google Scholar 

  16. L.F. Pease III, W.B. Russel, J. Non-Newtonian Fluid Mech. 102, 233 (2002).

    Article  MATH  Google Scholar 

  17. F. Closa, F. Ziebert, E. Raphaël, Phys. Rev. E 83, 051603 (2011).

    Article  ADS  Google Scholar 

  18. F. Closa, F. Ziebert, E. Raphaël, Math. Model. Nat. Phenom. 7, 6 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Thomas, A. Chenneviere, G. Reiter, U. Steiner, Phys. Rev. E 83, 021804 (2011).

    Article  ADS  Google Scholar 

  20. The small conductivity of a polystyrene melt, σ ∝ 10−18 Ω−1m−1 leads to characteristic times for the displacement of charges of around ε/σ ∝ 106 s where ε ≃ 2.5ε 0 is the permittivity. Hence charge displacements can be neglected during the growth of the instability.

  21. J.R. Melcher, G.I. Taylor, Annu. Rev. Fluid Mech. 1, 111 (1969).

    Article  ADS  Google Scholar 

  22. Y. Tsori, Rev. Mod. Phys. 81, 1471 (2009).

    Article  ADS  Google Scholar 

  23. C.W. Macosko, Rheology: Principles, Measurements, and Applications (Wiley, New York, 1994).

  24. To first order in height perturbation, the convective nonlinearities do not play a role.

  25. G. Tomar, V. Shankar, S.K. Shukla, A. Sharma, G. Biswas, Eur. Phys. J. E 20, 185 (2006).

    Article  Google Scholar 

  26. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon Press, New York, 1986). .

  27. P.G. de Gennes, Langmuir 18, 3413 (2002).

    Article  Google Scholar 

  28. M. Behr, Int. J. Num. Meth. Fluids 45, 43 (2004).

    Article  MATH  Google Scholar 

  29. X.H. Pan, S.Q. Huang, S.W. Yu, X.Q. Feng, J. Phys. D: Appl. Phys. 42, 055302 (2009).

    Article  ADS  Google Scholar 

  30. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1998).

  31. A. Onuki, Physica A 217, 38 (1995).

    Article  ADS  Google Scholar 

  32. A. Ghatak, M.K. Chaudhury, V. Shenoy, A. Sharma, Phys. Rev. Lett. 85, 4329 (2000).

    Article  ADS  Google Scholar 

  33. V. Shenoy, A. Sharma, J. Mech. Phys. Solids 50, 1155 (2002).

    Article  MATH  ADS  Google Scholar 

  34. Note that in case of ρ = 0, i.e. without inertia, l = k and the solution of eq. (15) reads ũ z = A 1 cosh[k(z + h 0)] + A 2(z + h 0) cosh[k(z + h 0)] + B 1 sinh[k(z + h 0)] + B 2(z + h 0) sinh[k(z + h 0)].

  35. Note that all coefficients are ∝ h, hence Z(k, s) does not depend on h.

  36. R. Fetzer, M. Rauscher, A. Münch, B.A. Wagner, K. Jacobs, Europhys. Lett. 75, 638 (2006).

    Article  ADS  Google Scholar 

  37. Note that the opposite behavior concerning tension vs. compression has been found for a viscoelastic solid (Voigt-Kelvin model) in fabve.

  38. This effect is related to viscoelasticity, as it was absent in the purely elastic case studied in fabien.

  39. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

    Article  ADS  Google Scholar 

  40. M. Grinfeld, Sov. Phys. Dokl. 31, 831 (1986).

    ADS  Google Scholar 

  41. R. Asaro, W. Tiller, Metall. Trans. A 3, 1789 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ziebert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Closa, F., Raphaël, E. & Ziebert, F. Electro-hydrodynamic instability of stressed viscoelastic polymer films. Eur. Phys. J. E 36, 124 (2013). https://doi.org/10.1140/epje/i2013-13124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13124-x

Keywords

Navigation