Skip to main content
Log in

Compressibility and pressure correlations in isotropic solids and fluids

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Presenting simple coarse-grained models of isotropic solids and fluids in d = 1 , 2 and 3 dimensions we investigate the correlations of the instantaneous pressure and its ideal and excess contributions at either imposed pressure (NPT-ensemble, λ = 0 or volume (NVT-ensemble, λ = 1 and for more general values of the dimensionless parameter λ characterizing the constant-volume constraint. The stress fluctuation representation \(\left. {\mathcal{F}_{Row} } \right|_{\lambda = 0} = Kf_0 (x)\) of the compression modulus K in the NVT-ensemble is derived directly (without a microscopic displacement field) using the well-known thermodynamic transformation rules between conjugated ensembles. The transform is made manifest by computing the Rowlinson functional \(\mathcal{F}_{Row}\) also in the NPT-ensemble where \(\left. {\mathcal{F}_{Row} } \right|_{\lambda = 0} = Kf_0 (x)\) with x = P id/K being a scaling variable, P id the ideal pressure and f 0(x) = x(2−x) a universal function. By gradually increasing λ by means of an external spring potential, the crossover between both classical ensemble limits is monitored. This demonstrates, e.g., the lever rule \(\left. {\mathcal{F}_{Row} } \right|_\lambda = K\left[ {\lambda + (1 - \lambda )f_0 (x)} \right]\).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon Press, 1959).

  2. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985).

  3. J.S. Rowlinson, Liquids and liquid mixtures (Butterworths Scientific Publications, London, 1959).

  4. D.R. Squire, A.C. Holt, W.G. Hoover, Physica 42, 388 (1969).

    Article  ADS  Google Scholar 

  5. J.F. Lutsko, J. Appl. Phys. 65, 2991 (1989).

    Article  ADS  Google Scholar 

  6. J.P. Wittmer, A. Tanguy, J.-L. Barrat, L. Lewis, Europhys. Lett. 57, 423 (2002).

    Article  ADS  Google Scholar 

  7. K. van Workum, J. de Pablo, Phys. Rev. E 67, 011505 (2003).

    Article  ADS  Google Scholar 

  8. J.-L. Barrat, J.-N. Roux, J.-P. Hansen, M.L. Klein, Europhys. Lett. 7, 707 (1988).

    Article  ADS  Google Scholar 

  9. G. Papakonstantopoulos, R. Riggleman, J.L. Barrat, J.J. de Pablo, Phys. Rev. E 77, 041502 (2008).

    Article  ADS  Google Scholar 

  10. N. Schulmann, H. Xu, H. Meyer, P. Polińska, J. Baschnagel, J.P. Wittmer, Eur. Phys. J. E 35, 93 (2012).

    Article  Google Scholar 

  11. M. Allen, D. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1994).

  12. D. Frenkel, B. Smit, Understanding Molecular Simulation -- From Algorithms to Applications (Academic Press, San Diego, 2002) 2nd edition.

  13. J.P. Wittmer, H. Xu, P. Polińska, F. Weysser, J. Baschnagel, J. Chem. Phys. 138, 12A533 (2013).

    Google Scholar 

  14. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954).

  15. H. Xu, J. Wittmer, P. Polińska, J. Baschnagel, Phys. Rev. E 86, 046705 (2012).

    Article  ADS  Google Scholar 

  16. If a truncated potential is used as for the two glass-forming liquids discussed, some care is needed for the computation of η Born. Being a moment of the second potential derivative, η Born needs to be corrected using a weighted histogram evaluated at the cutoff as described in ref. XWP12. This correction is a simple average and the same value is obtained for any λ. It becomes relevant if eq. (9) is probed for small λ.

  17. A. Tanguy, J.P. Wittmer, F. Leonforte, J.-L. Barrat, Phys. Rev. B 66, 174205 (2002).

    Article  ADS  Google Scholar 

  18. A. Tanguy, F. Leonforte, J.P. Wittmer, J.-L. Barrat, Appl. Surf. Sci. 226, 282 (2004).

    Article  ADS  Google Scholar 

  19. F. Léonforte, R. Boissière, A. Tanguy, J.P. Wittmer, J.-L. Barrat, Phys. Rev. B 72, 224206 (2005).

    Article  ADS  Google Scholar 

  20. J.-L. Barrat, in Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology, edited by M. Ferrario, G. Ciccotti, K. Binder, Vol. 704 (Springer, Berlin and Heidelberg, 2006) pp. 287---307.

  21. A. Zaccone, E. Terentjev, Phys. Rev. Lett. 110, 178002 (2013).

    Article  ADS  Google Scholar 

  22. C. Maloney, A. Lemaître, Phys. Rev. Lett. 93, 195501 (2004).

    Article  ADS  Google Scholar 

  23. K. Yoshimoto, T. Jain, K. van Workum, P. Nealey, J. de Pablo, Phys. Rev. Lett. 93, 175501 (2004).

    Article  ADS  Google Scholar 

  24. B. Schnell, H. Meyer, C. Fond, J. Wittmer, J. Baschnagel, Eur. Phys. J. E 34, 97 (2011).

    Article  Google Scholar 

  25. F. Léonforte, A. Tanguy, J.P. Wittmer, J.-L. Barrat, Phys. Rev. Lett. 97, 055501 (2006).

    Article  ADS  Google Scholar 

  26. J.L. Lebowitz, J. K. Percus, L. Verlet, Phys. Rev. 153, 250 (1967).

    Article  ADS  Google Scholar 

  27. We only consider classical systems. The generalization to quantum systems may involve delicate problems.

  28. The general stress fluctuation formalism may be applied close to a first-order phase transition only as long as the transformation relation between conjugated ensembles [26] remains valid. Necessary conditions are that the elastic modulus of interest remains positive definite and that the fluctuations of the extensive variable X are symmetric around the main maximum of the distribution \(p\left( {\hat X} \right)\). The stress fluctuation formalism becomes incorrect in general close to a second-order phase transition.

  29. J.P. Wittmer, H. Xu, P. Polińska, F. Weysser, J. Baschnagel, J. Chem. Phys. 138, 191101 (2013).

    Article  ADS  Google Scholar 

  30. The spring constant k ext has the dimension energy per volume which implies, as one expects, [K ext] = energy/volume for the associated compression modulus.

  31. J. Hetherington, J. Low Temp. Phys. 66, 145 (1987).

    Article  ADS  Google Scholar 

  32. M. Costeniuc, R. Ellis, H. Touchette, B. Turkington, Phys. Rev. E 73, 026105 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  33. A similar external spring potential has been introduced in ref. [7] using a negative spring constant in order to reduce the effective modulus of the total system.

  34. The focus of Hetherington's Gaussian ensemble [31], as of related generalizations [32], is on the transformation between the microcanonical ensemble, characterized by the (possibly non-concave) entropy as a function of the energy, and the (generalized) canonical ensemble, characterized by the free energy as a function of the inverse temperature β, i.e. different pairs of conjugated variables are considered compared to the present work. More importantly, Hetherington's additional weight factor does in general correspond to a change of the mean intensive variable. This is why we have used the Gaussian, eq. (8), centered at the mean volume V = V ext and not just \(U_{ext} \left( {\hat V} \right) \propto \hat V^2\) which would alter the pressure P.

  35. With X being the extensive variable, the intensive variable may be either defined as the derivative I = ∂U(X)/∂X of the inner energy U or as the derivative J = ∂S(X)/∂X of the entropy S [2]. It is the second definition which is used in ref. [26]. Note that J = βI for all extensive variables X other than U [2]. In our case we have X = V, I = −P and J = βP.

  36. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964).

  37. Ergodicity problems are irrelevant since these systems have been sampled by means of MC simulation.

  38. W. Kob, H.C. Andersen, Phys. Rev. E 52, 4134 (1995).

    Article  ADS  Google Scholar 

  39. S.J. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  MATH  Google Scholar 

  40. Qualitatively, this is similar to the predicted [21] and numerically observed [8,13] cusp-like singularity \(G \approx \sqrt {1 - {T \mathord{\left/ {\vphantom {T {T_g }}} \right. \kern-\nulldelimiterspace} {T_g }}}\) of the shear modulus G in colloidal and polymer glasses at the glass transition temperature T g due to the increase of the non-affine displacements.

  41. It is possible to collapse the data by plotting the ratio of ηF,ex|1 and the second term in eq. (67) as function of the ratio of P id and a crossover ideal pressure P *id .

  42. F. Birch, J. App. Phys. 9, 279 (1938).

    Article  ADS  MATH  Google Scholar 

  43. Equation (C.15) assumes implicitly that the excess stress is computed according the Kirkwood stress expression generalizing eq. (6). Consistency requires that the excess stress fluctuation contribution C αβγδF,ex is computed using the same definition for the instantaneous excess stress.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Wittmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittmer, J.P., Xu, H., Polińska, P. et al. Compressibility and pressure correlations in isotropic solids and fluids. Eur. Phys. J. E 36, 131 (2013). https://doi.org/10.1140/epje/i2013-13131-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13131-y

Keywords

Navigation