Skip to main content
Log in

New conserved structural fields for supercooled liquids

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

By considering Voronoi tessellations of the configurations of a fluid, we propose two new conserved fields, which provide structural information not fully accounted for by the usual 2-point density correlation functions. One of these fields is scalar and associated with the volume of the Voronoi cell, whereas the other one, termed the “geometric polarisation”, is vectorial and related to the local anisotropy of the configurations. We study the static and dynamical properties of these fields in the supercooled regime of a model glass-forming liquid. We show that the geometric polarisation is statically correlated to the force field, but contrary to it develops a plateau regime when the temperature is lowered. This different relaxation is related to the cage effect in glass-forming liquids, which prevents a complete relaxation of the shape of the cage around particle on intermediate time scales.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Binder, W. Kob, Glassy Materials and Disordered Solids (World Scientific, 2005).

  2. W. Götze, Complex Dynamics of Glass-Forming Liquids (Oxford Science Publications, 2009).

  3. G. Parisi, F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).

    Article  ADS  Google Scholar 

  4. K.S. Schweizer, J. Chem. Phys. 123, 244501 (2005).

    Article  ADS  Google Scholar 

  5. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011).

    Article  ADS  Google Scholar 

  6. L. Berthier, G. Biroli, J.P. Bouchaud, L. Cipelletti, W. van Saarloos, Dynamical Heterogeneities in Glasses, Colloids and Granular Media (Oxford Science Publications, 2011).

  7. K.S. Schweizer, Curr. Opin. Colloid Interface Sci. 12, 297 (2007).

    Article  Google Scholar 

  8. J. Baschnagel, F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005).

    ADS  Google Scholar 

  9. A. Cavagna, Phys. Rep. 476, 51 (2009).

    Article  ADS  Google Scholar 

  10. G. Biroli, J.P. Bouchaud, K. Miyazaki, D.R. Reichman, Phys. Rev. Lett. 97, 195701 (2006).

    Article  ADS  Google Scholar 

  11. E. Zaccarelli, G. Foffi, P.D. Gregorio, F. Sciortino, P. Tartaglia, K.A. Dawson, J. Phys.: Condens. Matter 14, 2413 (2002).

    ADS  Google Scholar 

  12. W. Götze, L. Sjögren, Z. Phys. B 65, 415 (1987).

    Article  Google Scholar 

  13. S.P. Das, G.F. Mazenko, Phys. Rev. A 34, 2265 (1986).

    Article  ADS  Google Scholar 

  14. M.E. Cates, S. Ramaswamy, Phys. Rev. Lett. 96, 135701 (2006).

    Article  ADS  Google Scholar 

  15. C.Z.W. Liu, I. Oppenheim, Physica A 235, 369 (1997).

    Article  ADS  Google Scholar 

  16. A. Okabe, B. Boots, K. Sugihara, S. Nok Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams (Wiley, 2000).

  17. S. Frey, PhD Thesis, Université de Strasbourg (2012) http://tel.archives-ouvertes.fr/tel-00759029.

  18. J. Helfferich, F. Ziebert, S. Frey, H. Meyer, J. Farago, A. Blumen, J. Baschnagel, Phys. Rev. E 89, 042603 (2014).

    Article  ADS  Google Scholar 

  19. S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci. Part B: Polym. Phys. 44, 2951 (2006).

    Article  ADS  Google Scholar 

  20. A. Rahman, J. Chem. Phys. 45, 2585 (1966).

    Article  ADS  Google Scholar 

  21. F.W. Starr, S. Sastry, J.F. Douglas, S.C. Glotzer, Phys. Rev. Lett. 89, 125501 (2002).

    Article  ADS  Google Scholar 

  22. V.S. Kumar, V. Kumaran, J. Chem. Phys. 123, 114501 (2005).

    Article  ADS  Google Scholar 

  23. E.N. Gilbert, Ann. Math. Stat. 33, 958 (1962).

    Article  MATH  Google Scholar 

  24. K. Kawasaki, Physica A 215, 61 (1995).

    Article  ADS  Google Scholar 

  25. J. Farago, in preparation.

  26. F.H. Stillinger, T.A. Weber, Phys. Rev. A 25, 978 (1982).

    Article  ADS  Google Scholar 

  27. F.H. Stillinger, T.A. Weber, Science 225, 983 (1984).

    Article  ADS  Google Scholar 

  28. F.H. Stillinger, Science 267, 1935 (1995).

    Article  ADS  Google Scholar 

  29. A. Widmer-Cooper, P. Harrowell, H. Fynewever, Phys. Rev. Lett. 93, 135701 (2004).

    Article  ADS  Google Scholar 

  30. R. Candelier, A. Widmer-Cooper, J.K. Kummerfeld, O. Dauchot, G. Biroli, P. Harrowell, D.R. Reichman, Phys. Rev. Lett. 105, 135702 (2010).

    Article  ADS  Google Scholar 

  31. A. Widmer-Cooper, P. Harrowell, Phys. Rev. Lett. 96, 185701 (2006).

    Article  ADS  Google Scholar 

  32. T.B. Schroder, S. Sastry, J.C. Dyre, S.C. Glotzer, J. Chem. Phys. 112, 9834 (2000).

    Article  ADS  Google Scholar 

  33. C. Song, P. Wang, Y. Jin, H.A. Makse, Physica A 389, 4497 (2010).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Farago.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farago, J., Semenov, A., Frey, S. et al. New conserved structural fields for supercooled liquids. Eur. Phys. J. E 37, 46 (2014). https://doi.org/10.1140/epje/i2014-14046-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14046-9

Keywords

Navigation