Skip to main content
Log in

Simulated glass-forming polymer melts: Dynamic scattering functions, chain length effects, and mode-coupling theory analysis

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We present molecular-dynamics simulations for a fully flexible model of polymer melts with different chain length N ranging from short oligomers (N = 4) to values near the entanglement length (N = 64). For these systems we explore the structural relaxation of the supercooled melt near the critical temperature T c of mode-coupling theory (MCT). Coherent and incoherent scattering functions are analyzed in terms of the idealized MCT. For temperatures T > T c we provide evidence for the space-time factorization property of the β relaxation and for the time-temperature superposition principle (TTSP) of the α relaxation, and we also discuss deviations from these predictions for TT c. For T larger than the smallest temperature where the TTSP holds we perform a quantitative analysis of the dynamics with the asymptotic MCT predictions for the late β regime. Within MCT a key quantity, in addition to T c, is the exponent parameter λ. For the fully flexible polymer models studied we find that λ is independent of N and has a value (λ = 0.735 ) typical of simple glass-forming liquids. On the other hand, the critical temperature increases with chain length toward an asymptotic value T c . This increase can be described by T c T c(N) ∼ 1/N and may be interpreted in terms of the N dependence of the monomer density ρ, if we assume that the MCT glass transition is ruled by a soft-sphere-like constant coupling parameter Γ c = ρ c T c −1/4, where ρ c is the monomer density at T c. In addition, we also estimate T c from a Hansen-Verlet-like criterion and MCT calculations based on structural input from the simulation. For our polymer model both the Hansen-Verlet criterion and the MCT calculations suggest T c to decrease with increasing chain length, in contrast to the direct analysis of the simulation data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Götze, L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).

    Article  Google Scholar 

  2. W. Götze, J. Phys.: Condens. Matter 11, A1 (1999).

    Google Scholar 

  3. W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, Oxford, 2009).

  4. A. Cavagna, Phys. Rep. 476, 51 (2009).

    Article  ADS  Google Scholar 

  5. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011).

    Article  ADS  Google Scholar 

  6. W. Kob, in Slow relaxations and nonequilibrium dynamics in condensed matter, edited by J.L. Barrat, M. Feigelmann, J. Kurchan, J. Dalibard (EDP Sciences/Springer, Les Ulis/Berlin, 2003) pp. 201--269.

  7. J. Baschnagel, F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005).

    ADS  Google Scholar 

  8. T. Franosch, M. Fuchs, W. Götze, M.R. Mayr, A.P. Singh, Phys. Rev. E 55, 7153 (1997).

    Article  ADS  Google Scholar 

  9. M. Fuchs, W. Götze, M.R. Mayr, Phys. Rev. E 58, 3384 (1998).

    Article  ADS  Google Scholar 

  10. W. Götze, L. Sjögren, Transport Theory Stat. Phys. 24, 801 (1995).

    Article  MATH  Google Scholar 

  11. M.E. Cates, S. Ramaswamy, Phys. Rev. Lett. 96, 135701 (2006).

    Article  ADS  Google Scholar 

  12. P. Meyer, K. Miyazaki, D. Reichman, Phys. Rev. Lett. 97, 095702 (2006).

    Article  ADS  Google Scholar 

  13. S.H. Chong, Phys. Rev. E 78, 041501 (2008).

    Article  ADS  Google Scholar 

  14. K.S. Schweizer, Curr. Opinion Coll. Interf. Sci. 12, 297 (2007).

    Article  Google Scholar 

  15. A.S. Keys, L.O. Hedges, J.P. Garrahan, S.C. Glotzer, D. Chandler, Phys. Rev. X 1, 021013 (2011).

    Google Scholar 

  16. K.N. Pham, A.M. Puertas, J. Bergenholtz, S.U. Egelhaaf, P.N. Moussaïd, P.N. Pusey, A.B. Schofield, M.E. Cates, M. Fuchs, W.C.K. Poon, Science 269, 104 (2002).

    Article  ADS  Google Scholar 

  17. M. Sperl, Phys. Rev. E 68, 031405 (2003).

    Article  ADS  Google Scholar 

  18. A.J. Moreno, J. Colmenero, Phys. Rev. E 74, 021409 (2006).

    Article  ADS  Google Scholar 

  19. A.J. Moreno, J. Colmenero, J. Chem. Phys. 124, 184906 (2006).

    Article  ADS  Google Scholar 

  20. S.H. Chong, M. Fuchs, Phys. Rev. Lett. 88, 185702 (2002).

    Article  ADS  Google Scholar 

  21. S.H. Chong, M. Aichele, H. Meyer, M. Fuchs, J. Baschnagel, Phys. Rev. E 76, 051806 (2007).

    Article  ADS  Google Scholar 

  22. V. Krakoviack, Phys. Rev. E 75, 031503 (2007).

    Article  ADS  Google Scholar 

  23. V. Krakoviack, Phys. Rev. E 79, 061501 (2009).

    Article  ADS  Google Scholar 

  24. V. Krakoviack, Phys. Rev. E 84, 050501(R) (2011).

    Article  ADS  Google Scholar 

  25. S. Lang, R. Schilling, V. Krakoviack, T. Franosch, Phys. Rev. E 86, 021502 (2012).

    Article  ADS  Google Scholar 

  26. M. Fuchs, Adv. Polym. Sci. 236, 55 (2010).

    Article  Google Scholar 

  27. M. Bernabei, A.J. Moreno, J. Colmenero, Phys. Rev. Lett. 101, 255701 (2008).

    Article  ADS  Google Scholar 

  28. M. Bernabei, A.J. Moreno, J. Colmenero, J. Chem. Phys. 131, 204502 (2009).

    Article  ADS  Google Scholar 

  29. M. Bernabei, A.J. Moreno, E. Zaccarelli, F. Sciortino, J. Colmenero, J. Chem. Phys. 134, 024523 (2011).

    Article  ADS  Google Scholar 

  30. W. Paul, D. Bedrov, G.D. Smith, Phys. Rev. E 74, 021501 (2006).

    Article  ADS  Google Scholar 

  31. J. Colmenero, A. Narros, F. Alvarez, A. Arbe, A.J. Moreno, J. Phys.: Condens. Matter 19, 205127 (2007).

    ADS  Google Scholar 

  32. S. Capponi, A. Arbe, F. Alvarez, J. Colmenero, B. Frick, J.P. Embs, J. Chem. Phys. 131, 204901 (2009).

    Article  ADS  Google Scholar 

  33. Y. Khairy, F. Alvarez, A. Arbe, J. Colmenero, Phys. Rev. E 88, 042302 (2013).

    Article  ADS  Google Scholar 

  34. C. Bennemann, J. Baschnagel, W. Paul, Eur. Phys. J. B 10, 323 (1999).

    Article  ADS  Google Scholar 

  35. M. Aichele, J. Baschnagel, Eur. Phys. J. E 5, 229 (2001).

    Article  Google Scholar 

  36. T. Voigtmann, Europhys. Lett. 96, 36006 (2011).

    Article  ADS  Google Scholar 

  37. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, Oxford, 2003).

  38. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).

  39. B. Schnell, H. Meyer, C. Fond, J. Wittmer, J. Baschnagel, Eur. Phys. J. E 34, 97 (2011).

    Article  Google Scholar 

  40. L. Larini, A. Ottochian, C. De Michele, D. Leporini, Nat. Phys. 4, 42 (2008).

    Article  Google Scholar 

  41. A. Barbieri, D. Prevosto, M. Lucchesi, D. Leporini, J. Phys.: Condens. Matter 16, 6609 (2004).

    ADS  Google Scholar 

  42. R.A.L. Vallée, W. Paul, K. Binder, J. Chem. Phys. 132, 034901 (2010).

    Article  ADS  Google Scholar 

  43. S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci. B 44, 2951 (2006).

    Article  Google Scholar 

  44. M. Solar, H. Meyer, C. Gauthier, C. Fond, O. Benzerara, R. Schirrer, J. Baschnagel, Phys. Rev. E 85, 021808 (2012).

    Article  ADS  Google Scholar 

  45. R. Everaers, S.K. Sukumaran, G.S. Grest, C. Svaneborg, A. Sivasubramanian, K. Kremer, Science 303, 823 (2004).

    Article  ADS  Google Scholar 

  46. S.C. Plimpton, Comput. Phys. 117, 1 (1995).

    Article  ADS  MATH  Google Scholar 

  47. R. Auhl, R. Everaers, G.S. Grest, K. Kremer, S.J. Plimpton, J. Chem. Phys. 119, 12718 (2003).

    Article  ADS  Google Scholar 

  48. W. Götze, J. Phys.: Condens. Matter 2, 8485 (1990).

    ADS  Google Scholar 

  49. T.G. Fox, S. Loshaek, J. Polym. Sci. 15, 371 (1955).

    Article  ADS  Google Scholar 

  50. K.S. Schweizer, J.G. Curro, Adv. Chem. Phys. 98, 1 (1997).

    Google Scholar 

  51. M. Aichele, S.H. Chong, J. Baschnagel, M. Fuchs, Phys. Rev. E 69, 061801 (2004).

    Article  ADS  Google Scholar 

  52. F. Weysser, A.M. Puertas, M. Fuchs, T. Voigtmann, Phys. Rev. E 82, 011504 (2010).

    Article  ADS  Google Scholar 

  53. J.P. Hansen, L. Verlet, Phys. Rev. 184, 151 (1969).

    Article  ADS  Google Scholar 

  54. M. Fuchs, K.S. Schweizer, J. Phys.: Condens. Matter 14, R239 (2002).

    ADS  Google Scholar 

  55. J.P. Wittmer, A. Cavallo, H. Xu, J.E. Zabel, P. Polińska, N. Schulmann, H. Meyer, J. Farago, A. Johner, S.P. Obukhov et al., J. Stat. Phys. 145, 1017 (2011).

    Article  ADS  MATH  Google Scholar 

  56. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1996).

  57. S. Krushev, W. Paul, Phys. Rev. E 67, 021806 (2003).

    Article  ADS  Google Scholar 

  58. W. Kob, H.C. Andersen, Phys. Rev. E 51, 4626 (1995).

    Article  ADS  Google Scholar 

  59. T. Gleim, W. Kob, Eur. Phys. J. B 13, 83 (2000).

    Article  ADS  Google Scholar 

  60. T. Voigtmann, A.M. Puertas, M. Fuchs, Phys. Rev. E 70, 061506 (2004).

    Article  ADS  Google Scholar 

  61. F. Weysser, D. Hajnal, Phys. Rev. E 83, 041503 (2011).

    Article  ADS  Google Scholar 

  62. J. Horbach, W. Kob, J. Phys.: Condens. Matter 14, 9237 (2002).

    ADS  Google Scholar 

  63. J. Horbach, W. Kob, Phys. Rev. E 64, 041503 (2001).

    Article  ADS  Google Scholar 

  64. E. Flenner, G. Szamel, Phys. Rev. E 72, 031508 (2005).

    Article  ADS  Google Scholar 

  65. G. Foffi, W. Götze, F. Sciortino, P. Tartaglia, T. Voigtmann, Phys. Rev. E 69, 011505 (2004).

    Article  ADS  Google Scholar 

  66. X.C. Zeng, D. Kivelson, G. Tarjus, Phys. Rev. E 50, 1711 (1994).

    Article  ADS  Google Scholar 

  67. H.Z. Cummins, G. Li, Phys. Rev. E 50, 1720 (1994).

    Article  ADS  Google Scholar 

  68. S. Frey, PhD thesis, Université de Strasbourg, Strasbourg (2012) available from http://www.sudoc.fr/165862653.

  69. T. Gleim, W. Kob, K. Binder, Phys. Rev. Lett. 81, 4404 (1998).

    Article  ADS  Google Scholar 

  70. L. Berthier, W. Kob, J. Phys.: Condens. Matter 19, 205130 (2007).

    ADS  Google Scholar 

  71. F. Sciortino, L. Fabbian, S.H. Chen, P. Tartaglia, Phys. Rev. E 56, 5397 (1997).

    Article  ADS  Google Scholar 

  72. S.H. Chong, F. Sciortino, Phys. Rev. E 69, 051202 (2004).

    Article  ADS  Google Scholar 

  73. W. Kob, H.C. Andersen, Phys. Rev. E 52, 4134 (1995).

    Article  ADS  Google Scholar 

  74. M. Nauroth, W. Kob, Phys. Rev. E 55, 657 (1997).

    Article  ADS  Google Scholar 

  75. L. Berthier, G. Tarjus, Phys. Rev. E 82, 031502 (2010).

    Article  ADS  Google Scholar 

  76. S. Mossa, R. Di Leonardo, G. Ruocco, M. Sampoli, Phys. Rev. E 62, 612 (2000).

    Article  ADS  Google Scholar 

  77. A.E. Likhtman, Polymer Science: A Comprehensive Reference, Vol. 1 (Elsevier, Amsterdam, 2012) chapt. Viscoelasticity and Molecular Rheology, pp. 133--179.

  78. J. Farago, A.N. Semenov, H. Meyer, J.P. Wittmer, A. Johner, J. Baschnagel, Phys. Rev. E 85, 051806 (2012).

    Article  ADS  Google Scholar 

  79. J. Farago, H. Meyer, J. Baschnagel, A.N. Semenov, Phys. Rev. E 85, 051807 (2012).

    Article  ADS  Google Scholar 

  80. T.G. Fox, P.J. Flory, J. Polym. Sci. 14, 315 (1954).

    Article  ADS  Google Scholar 

  81. G.B. McKenna, in Comprehensive Polymer Science, edited by C. Booth, C. Price, Vol. 2 (Pergamon, New York, 1986) pp. 311--362.

  82. J. Hintermeyer, A. Herrmann, R. Kahlau, C. Goiceanu, E.A. Rössler, Macromolecules 41, 9335 (2008).

    Article  ADS  Google Scholar 

  83. A.L. Agapov, A.P. Sokolov, Macromolecules 42, 2877 (2009).

    Article  ADS  Google Scholar 

  84. J. Dudowicz, K.F. Freed, J.F. Douglas, Adv. Chem. Phys. 137, 125 (2008).

    Google Scholar 

  85. M. Durand, H. Meyer, O. Benzerara, J. Baschnagel, O. Vitrac, J. Chem. Phys. 132, 194902 (2010).

    Article  ADS  Google Scholar 

  86. B. Lobe, J. Baschnagel, J. Chem. Phys. 101, 1616 (1994).

    Article  ADS  Google Scholar 

  87. T. Voigtmann, Phys. Rev. Lett. 101, 095701 (2008).

    Article  ADS  Google Scholar 

  88. N. Gnan, T.B. Schrøder, U.R. Pedersen, N.P. Bailey, J.C. Dyre, J. Chem. Phys. 131, 234504 (2009).

    Article  ADS  Google Scholar 

  89. D. Coslovich, C.M. Roland, J. Phys. Chem. B 112, 1329 (2008).

    Article  Google Scholar 

  90. C.M. Roland, S. Hensel-Bielowka, M. Paluch, R. Casalini, Rep. Prog. Phys. 68, 1405 (2005).

    Article  ADS  Google Scholar 

  91. L. Berthier, G. Tarjus, Eur. Phys. J. E 34, 96 (2011).

    Article  Google Scholar 

  92. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986). .

  93. C. Bennemann, W. Paul, J. Baschnagel, K. Binder, J. Phys.: Condens. Matter 11, 2179 (1999).

    ADS  Google Scholar 

  94. W. Götze, T. Voigtmann, Phys. Rev. E 61, 4133 (2000).

    Article  ADS  Google Scholar 

  95. F. Sciortino, P. Tartaglia, J. Phys.: Condens. Matter 11, A261 (1999).

    ADS  Google Scholar 

  96. W. Paul, G.D. Smith, Rep. Prog. Phys. 67, 1117 (2004).

    Article  ADS  Google Scholar 

  97. F. Sciortino, W. Kob, Phys. Rev. Lett. 86, 648 (2001).

    Article  ADS  Google Scholar 

  98. A. Rinaldi, F. Sciortino, P. Tartaglia, Phys. Rev. E 63, 061210 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Baschnagel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frey, S., Weysser, F., Meyer, H. et al. Simulated glass-forming polymer melts: Dynamic scattering functions, chain length effects, and mode-coupling theory analysis. Eur. Phys. J. E 38, 11 (2015). https://doi.org/10.1140/epje/i2015-15011-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15011-x

Keywords

Navigation