Skip to main content
Log in

Dielectric α-relaxation of 1,4-polybutadiene confined between graphite walls

Molecular dynamics investigations through numerical simulations of polymer molecules relaxation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We present results of Molecular Dynamics (MD) simulations of a chemically realistic model of 1,4-polybutadiene confined by crystalline graphite walls. The simulations cover a large range of temperatures from T ≈ 2T g to T ≈ 1.15T g, where relevant time scales are accessible using such computational methods. We investigate the dielectric relaxation close to the walls in comparison to the one in the center of the film, and study the latter as a function of the film thickness from the walls. The segmental dynamics in the film is slowed down close to the walls, in comparison to the bulk. In addition to the α-process, the relaxation exhibits an additional long time decay, the so-called wall desorption process. We focus here on the α-process and find no significant shift of the dielectric T g as a function of layer thickness, in agreement with recent dielectric experiments. These findings can be correlated with the importance of the dihedral dynamics for all relaxation processes in polymers, which is unaltered except for the first nanometer next to the walls.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.G. Advani, Processing and Properties Nanocomposites (Worlds Scientific, Singapore, 2006).

  2. D. Gay, S.V. Hoa, Composite Materials, Design and Applications (CRC Press, Boca Raton, 2007).

  3. K. Binder, W. Kob, Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics (World Scientific Publishing Company, Singapore, 2011).

  4. W. Goetze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, Oxford, 2008).

  5. L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. El Masri, D. L’Hote, F. Ladieu, M. Pierno, Science 310, 5755 (2005).

    Article  Google Scholar 

  6. U. Tracht, M. Wilhelm, A. Heuer, H.W. Spiess, J. Magn. Reson. 140, 460 (1999).

    Article  ADS  Google Scholar 

  7. M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).

    Article  ADS  Google Scholar 

  8. K. Paeng, S.F. Swallen, M.D. Ediger, J. Am. Chem. Soc. 133, 8444 (2011).

    Article  Google Scholar 

  9. J.L. Keddie, R.A.L. Jones, A.R. Cory, Europhys. Lett. 27, 59 (1994).

    Article  ADS  Google Scholar 

  10. J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997).

    Article  ADS  Google Scholar 

  11. C.B. Roth, J.R. Dutcher, in Soft Materials: Structure and Dynamics, edited by J.R. Dutcher, A.G. Marangoni (Dekker, New York, 2005).

  12. F. Kremer, E.U. Mapesa, M. Tress, in Recent Advances in Broadband Dielectric Spectroscopy, edited by Y.P. Kalmykov (Springer, Dordrecht, 2012).

  13. F. Kremer, M. Tress, E.U. Mapesa, J. Non-Cryst. Solids 407, 277 (2015).

    Article  ADS  Google Scholar 

  14. J. Baschnagel, F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005).

    ADS  Google Scholar 

  15. J.A. Torres, P.F. Nealey, J.J. de Pablo, Phys. Rev. Lett. 85, 3221 (2000).

    Article  ADS  Google Scholar 

  16. G.D. Smith, D. Bedrov, O. Borodin, Phys. Rev. Lett. 90, 226103 (2003).

    Article  ADS  Google Scholar 

  17. A. Serghei, F. Kremer, Macromol. Chem. Phys. 209, 810 (2008).

    Article  Google Scholar 

  18. A. Raegen, M. Chowdhury, C. Calers, A. Schmatulla, U. Steiner, G. Reiter, Phys. Rev. Lett. 105, 227801 (2010).

    Article  ADS  Google Scholar 

  19. S. Napolitano, M. Wübbenhorst, Nat. Commun. 2, 260 (2011).

    Article  ADS  Google Scholar 

  20. S. Napolitano, S. Capponi, B. Vanroy, Eur. Phys. J. E 36, 61 (2013).

    Article  Google Scholar 

  21. M. Erber, M. Tress, E.U. Mapesa, A. Serghei, K.-J. Eichhorn, B. Voit, F. Kremer, Macromolecules 43, 7729 (2010).

    Article  ADS  Google Scholar 

  22. E.U. Mapesa, M. Tress, G. Schulz, H. Huth, C. Schick, M. Reichec, F. Kremer, Soft Matter 9, 10592 (2013).

    Article  ADS  Google Scholar 

  23. O. Bäumchen, J.D. McGraw, J.A. Forrest, K. Dalnoki-Veress, Phys. Rev. Lett. 109, 055701 (2012).

    Article  ADS  Google Scholar 

  24. M. Tress, E.U. Mapesa, W. Kossack, W.K. Kipnusu, M. Reiche, F. Kremer, Science 341, 6152 (2013).

    Article  Google Scholar 

  25. D. Cangialosi, V.M. Boucher, A. Alegria, J. Colmenero, Phys. Rev. Lett. 111, 095701 (2013).

    Article  ADS  Google Scholar 

  26. S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci. Part B: Polym. Phys. 44, 2951 (2006).

    Article  ADS  Google Scholar 

  27. S. Peter, S. Napolitano, H. Meyer, M. Wübbenhorst J. Baschnagel, Macromolecules 41, 7729 (2008).

    Article  ADS  Google Scholar 

  28. H. Eslami, F. Müller-Plathe, J. Phys. Chem. B 114, 387 (2010).

    Article  Google Scholar 

  29. D.V. Guseva, P.V. Komarov, A.V. Lyulin, J. Chem. Phys. 140, 114903 (2014).

    Article  ADS  Google Scholar 

  30. M. Vogel, Madromolecules 42, 9498 (2009).

    Article  ADS  Google Scholar 

  31. K. Johnston, V.A. Harmandaris, Soft Matter 8, 6320 (2012).

    Article  ADS  Google Scholar 

  32. A.N. Rissanou, V.A. Harmandaris, Soft Matter 10, 2876 (2014).

    Article  ADS  Google Scholar 

  33. G. Tsolou, V.A. Harmandaris, V.G. Mavrantzas, J. Chem. Phys. 124, 084906 (2006).

    Article  ADS  Google Scholar 

  34. V.A. Harmandaris, K.Ch. Daoulas, V.G. Mavrantzas, Macromolecules 38, 5796 (2005).

    Article  ADS  Google Scholar 

  35. K.Ch. Daoulas, V.A. Harmandaris, V.G. Mavrantzas, Macromolecules 38, 5780 (2005).

    Article  ADS  Google Scholar 

  36. A.N. Rissanou, V.A. Harmandaris, J. Nanopart. Res. 15, 1589 (2013).

    Article  Google Scholar 

  37. P. Gestoso, E. Nicol, M. Doxastakis, D.N. Theodorou, Macromolecules 36, 6925 (2003).

    Article  ADS  Google Scholar 

  38. O. Alexiadis, V.G. Mavrantzas, R. Khare, J. Beckers, Macromolecules 41, 987 (2008).

    Article  ADS  Google Scholar 

  39. M. Solar, E.U. Mapesa, F. Kremer, K. Binder, W. Paul, EPL 104, 66004 (2013).

    Article  ADS  Google Scholar 

  40. M. Solar, L. Yelash, P. Virnau, K. Binder, W. Paul, Soft Mater. 12, S80 (2014).

    Article  Google Scholar 

  41. M. Solar, K. Binder, W. Paul, in Dynamics in Geometrical Confinement, Advances in Dielectrics edited by F. Kremer (Springer, Heidelberg, 2014).

  42. G.D. Smith, W. Paul, J. Phys. Chem. A 102, 1200 (1998).

    Article  Google Scholar 

  43. G.D. Smith, O. Borodin, W. Paul, J. Chem. Phys. 117, 10350 (2002).

    Article  ADS  Google Scholar 

  44. R. Zorn, F.I. Mopsik, G.B. McKenna, L. Willner, D. Richter, J. Chem. Phys. 107, 3645 (1997).

    Article  ADS  Google Scholar 

  45. G.D. Smith, O. Borodin, D. Bedrov, W. Paul, X. Qiu, M.D. Ediger, Macromolecules 34, 5192 (2001).

    Article  ADS  Google Scholar 

  46. W.A. Steele, Surf. Sci. 36, 317 (1973).

    Article  ADS  Google Scholar 

  47. B. Hess et al., J. Chem. Theor. Comput. 4, 435 (2008) http://www.gromacs.org.

    Article  Google Scholar 

  48. W. Paul, G.D. Smith, Rep. Prog. Phys. 67, 11117 (2004).

    Article  ADS  Google Scholar 

  49. I. Bahar, B. Erman, F. Kremer, Macromolecules 25, 816 (1992).

    Article  ADS  Google Scholar 

  50. L. Yelash, P. Virnau, K. Binder, W. Paul, Phys. Rev. E 82, 050801(R) (2010).

    Article  ADS  Google Scholar 

  51. L. Yelash, P. Virnau, K. Binder, W. Paul, EPL 98, 28006 (2012).

    Article  ADS  Google Scholar 

  52. C.W. Macosko, Rheology: Principles, Measurements, and Applications (Wiley-VCH, USA, 1994).

  53. Y.M. Haddad, Viscoelasticity of Engineering Materials (Springer, Berlin, 1995).

  54. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, USA, 2007).

  55. L. Schwartz, Mathematics for the Physical Sciences (Herman, Paris, 1966). .

  56. S. Krushev, W. Paul, Phys. Rev. E 67, 021806 (2003).

    Article  ADS  Google Scholar 

  57. D. Bedrov, G.D. Smith, Phys. Rev. E 71, 050801(R) (2005).

    Article  ADS  Google Scholar 

  58. R.H. Boyd, G.D. Smith, Polymer Dynamics and Relaxation (Cambridge University Press, UK, 2007).

  59. S. Havriliak, S. Negami, Polymer 8, 161 (1967).

    Article  Google Scholar 

  60. F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 102, 6251 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Solar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solar, M., Paul, W. Dielectric α-relaxation of 1,4-polybutadiene confined between graphite walls. Eur. Phys. J. E 38, 37 (2015). https://doi.org/10.1140/epje/i2015-15037-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15037-0

Keywords

Navigation