Skip to main content
Log in

Experimental evidence of ultrathin polymer film stratification by AFM force spectroscopy

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

By performing Atomic Force Microscopy measurements of pull-off force as a function of the temperature, we were able to probe the dynamic of supported thin polystyrene (PS) films. Thermal transitions induce modifications in the surface energy, roughness and surface modulus that are clearly detected by AFM and related to PS chain relaxation mechanisms. We demonstrated the existence of three transition temperatures that can be associated to the relaxation of polymer chains located at different depth regions within the polymer film. Independently of the film thickness, we have confirmed the presence of a region of high mobility for the polymer chains at the free interface. The thickness of this region is estimated to be above 7nm. The detection of a transition only present for film thicker than the gyration radius Rg is linked to the dynamics of polymer chains in a bulk conformation (i.e. not in contact with the free interface). We claim here that our results demonstrate, in agreement with other techniques, the stratification of thin polymer film depth profile in terms of relaxation behavior.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Siniscalco et al., J. Phys. Chem. C 117, 7391 (2013).

    Article  Google Scholar 

  2. T. Kerle et al., Macromolecules 34, 3484 (2001).

    Article  ADS  Google Scholar 

  3. H.-C. Scheer et al., J. Vac. Sci. Technol. B 25, 2392 (2007).

    Article  Google Scholar 

  4. A. Bansal et al., Nat. Mater. 4, 693 (2005).

    Article  ADS  Google Scholar 

  5. S. Napolitano, D. Cangialosi, Macromolecules 46, 8051 (2013).

    Article  ADS  Google Scholar 

  6. G. Reiter, S. Napolitano, J. Polym. Sci. B 48, 2544 (2010).

    Article  Google Scholar 

  7. G. Reiter, Europhys. Lett. 23, 579 (1993).

    Article  ADS  Google Scholar 

  8. J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994).

    Article  ADS  Google Scholar 

  9. C.B. Roth, J.R. Dutcher, in Soft Materials: Structure and Dynamics, edited by John R. Dutcher, Alejandro G. Marangoni, (Marcel Dekker, New York, 2005) pp. 1-38.

  10. G. Vignaud et al., Langmuir 21, 8601 (2005).

    Article  Google Scholar 

  11. P.G. de Gennes, Eur. Phys. J. E 2, 201 (2000).

    Article  Google Scholar 

  12. Y. Grohens et al., Eur. Phys. J. E 8, 217 (2002).

    Article  Google Scholar 

  13. C.J. Ellison, J.M. Torkelson, Nat. Mater. 2, 695 (2003).

    Article  ADS  Google Scholar 

  14. K. Tanaka et al., J. Phys. Chem. B 113, 4571 (2009).

    Article  Google Scholar 

  15. J.A. Forrest, J. Mattsson, Phys. Rev. E 61, R53 (2000).

    Article  ADS  Google Scholar 

  16. Z. Ao, S. Li, Nanosci. Res. Lett. 6, 243 (2011).

    Article  ADS  Google Scholar 

  17. T. Miyazaki, K. Nishida, T. Kanaya, Phys. Rev. E 69, 061803 (2004).

    Article  ADS  Google Scholar 

  18. D. Long, F. Lequeux, Eur. Phys. J. E 4, 371 (2001).

    Article  Google Scholar 

  19. S. Herminghaus, Eur. Phys. J. E 8, 237 (2002).

    Article  Google Scholar 

  20. M. Benzaquen, T. Salez, E. Raphaël, Eur. Phys. J. E 36, 1 (2013).

    Article  Google Scholar 

  21. A. Dequidt et al., Eur. Phys. J. E 35, 1 (2012).

    Article  Google Scholar 

  22. V.M. Boucher et al., Thermochim. Acta 575, 233 (2014).

    Article  Google Scholar 

  23. B. Zuo et al., Soft Matter 9, 9376 (2013).

    Article  ADS  Google Scholar 

  24. M.Y. Efremov et al., Phys. Rev. E 86, 021501 (2012).

    Article  ADS  Google Scholar 

  25. O. Bäumchen et al., Phys. Rev. Lett. 109, 055701 (2012).

    Article  ADS  Google Scholar 

  26. D. Hudzinskyy et al., Macromolecules 44, 2299 (2011).

    Article  ADS  Google Scholar 

  27. P. Bernazzani, R. Sanchez, J. Thermal Anal. Calorim. 96, 727 (2009).

    Article  Google Scholar 

  28. S. Gao, Y.P. Koh, S.L. Simon, Macromolecules 46, 562 (2013).

    Article  ADS  Google Scholar 

  29. A. El Ouakili et al., Thin Solid Films 519, 2031 (2011).

    Article  ADS  Google Scholar 

  30. F. Dinelli et al., Macromolecules 44, 987 (2011).

    Article  ADS  Google Scholar 

  31. M. Hinz et al., Eur. Polym. J. 40, 957 (2004).

    Article  Google Scholar 

  32. K. Miyake, N. Satomi, S. Sasaki, Appl. Phys. Lett. 89, 031925 (2006).

    Article  ADS  Google Scholar 

  33. D. Silbernagl, H. Sturm, B. Cappella, Langmuir 25, 5091 (2009).

    Article  Google Scholar 

  34. S.K. Kaliappan, B. Cappella, Polymer 46, 11416 (2005).

    Article  Google Scholar 

  35. B. Cappella, D. Silbernagl, Thin Solid Films 516, 1952 (2008).

    Article  ADS  Google Scholar 

  36. T. Kajiyama, K. Tanaka, A. Takahara, Macromolecules 30, 280 (1997).

    Article  ADS  Google Scholar 

  37. S. Sills et al., J. Appl. Phys. 98, 014302 (2005).

    Article  ADS  Google Scholar 

  38. S. Sills et al., J. Chem. Phys. 120, 5334 (2004).

    Article  ADS  Google Scholar 

  39. O.K.C. Tsui et al., Macromolecules 41, 1465 (2008).

    Article  ADS  Google Scholar 

  40. S. Ge et al., Phys. Rev. Lett. 85, 2340 (2000).

    Article  ADS  Google Scholar 

  41. J. Fu, B. Li, Y. Han, J. Chem. Phys. 123, 064713 (2005).

    Article  ADS  Google Scholar 

  42. D.B. Knorr et al., J. Chem. Phys. 134, 104502 (2011).

    Article  ADS  Google Scholar 

  43. F. Dinelli, C. Buenviaje, R.M. Overney, J. Chem. Phys. 113, 2043 (2000).

    Article  ADS  Google Scholar 

  44. O.K.C. Tsui et al., Macromolecules 33, 4198 (2000).

    Article  ADS  Google Scholar 

  45. V.N. Bliznyuk, H.E. Assender, G.A.D. Briggs, Macromolecules 35, 6613 (2002).

    Article  ADS  Google Scholar 

  46. Z. Yang et al., Science 38, 1676 (2010).

    Article  ADS  Google Scholar 

  47. J.H. Teichroeb, J.A. Forrest, Phys. Rev. Lett. 91, 016104 (2003).

    Article  ADS  Google Scholar 

  48. M. Daoud et al., Macromolecules 8, 804 (1975).

    Article  ADS  Google Scholar 

  49. G. Lecollinet et al., Langmuir 25, 7828 (2009).

    Article  Google Scholar 

  50. M. Mukherjee et al., Polymer 54, 4669 (2013).

    Article  Google Scholar 

  51. R. Levy, M. Maaloum, Nanotechnology 13, 33 (2002).

    Article  ADS  Google Scholar 

  52. L. Chen et al., Appl. Phys. Lett. 93, 053503 (2008).

    Article  ADS  Google Scholar 

  53. H.-J. Butt, B. Capella, M. Kappl, Surf. Sci. Rep. 59, 1 (2005).

    Article  ADS  Google Scholar 

  54. Y. Sun, B. Akhremitchev, G.C. Walker, Langmuir 20, 5837 (2004).

    Article  Google Scholar 

  55. H.-J. Butt et al., Soft Matter 6, 5930 (2010).

    Article  ADS  Google Scholar 

  56. I. Sridhar, K.L. Johnson, N.A. Fleck, J. Phys. D: Appl. Phys. 30, 1710 (1997).

    Article  ADS  Google Scholar 

  57. G. Castellanos, E. Arzt, M. Kamperman, Langmuir 27, 7752 (2011).

    Article  Google Scholar 

  58. N. Lakhera et al., Int. J. Adhesion Adhesives 44, 184 (2013).

    Article  Google Scholar 

  59. Y. Ando, Langmuir 24, 1418 (2007).

    Article  Google Scholar 

  60. H. Kim, B. Smit, J. Jang, J. Phys. Chem. C 116, 21923 (2012).

    Article  Google Scholar 

  61. N.W. Moore, Langmuir 27, 3678 (2011).

    Article  Google Scholar 

  62. R. Jones et al., Langmuir 18, 8045 (2002).

    Article  Google Scholar 

  63. R. Long, C.-Y. Hui, Proc. Royal Soc. A 465, 961 (2009).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  64. J. Drelich, Z. Xu, J. Masliyah, Langmuir 22, 8850 (2006).

    Article  Google Scholar 

  65. S. Yang et al., Langmuir 24, 743 (2008).

    Article  Google Scholar 

  66. J. Jang, J. Sung, G.C. Schatz, J. Phys. Chem. C 111, 4648 (2007).

    Article  Google Scholar 

  67. H. Awada et al., Thin Solid Films 519, 3690 (2011).

    Article  ADS  Google Scholar 

  68. S. Wu, J. Phys. Chem. 74, 632 (1970).

    Article  Google Scholar 

  69. O. Marti, in Modern Tribology Handbook, edited by B. Bushnan (CRC Press, New York, 2001). .

  70. K.R. Shull, Mater. Sci. Engin. R 36, 1 (2002).

    Article  Google Scholar 

  71. G. Luengo et al., Langmuir 14, 3873 (1998).

    Article  Google Scholar 

  72. A.D. Schwab et al., Macromolecules 33, 4903 (2000).

    Article  ADS  Google Scholar 

  73. S.E. Keinath, R.F. Boyer, J. Appl. Polym. Sci. 26, 2077 (1981).

    Article  Google Scholar 

  74. L. Gong, X. Zhang, Y. Shi, Eur. Polym. J. 47, 1931 (2011).

    Article  Google Scholar 

  75. D. Silbernagl, B. Cappella, Scanning 32, 282 (2010).

    Article  Google Scholar 

  76. P.C. Chung, E. Glynos, P.F. Green, Langmuir 30, 15200 (2014).

    Article  Google Scholar 

  77. O.K.C. Tsui, in Polymer Thin Films, edited by Ophelia K.C. Tsui, Thomas P. Russell (World Scientific, Singapore, 2008) pp. 267-294.

  78. L. Singh, P.J. Ludovice, C.L. Henderson, Thin Solid Films 449, 231 (2004).

    Article  ADS  Google Scholar 

  79. Y. Fujii et al., Macromolecules 42, 7418 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Delorme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delorme, N., Chebil, M.S., Vignaud, G. et al. Experimental evidence of ultrathin polymer film stratification by AFM force spectroscopy. Eur. Phys. J. E 38, 56 (2015). https://doi.org/10.1140/epje/i2015-15056-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15056-9

Keywords

Navigation