Skip to main content
Log in

A nonequilibrium power balance relation for analyzing dissipative filament dynamics

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Biofilaments like F-actin or microtubules, as well as cilia, flagella, or filament bundles, are often deformed by distributed and time-dependent external forces. It is highly desirable to characterize these filaments' mechanics in an efficient way, either using a single experiment or a high throughput method. We here propose a dynamic power balance approach to study nonequilibrium filament dynamics and exemplify it both experimentally and theoretically by applying it to microtubule gliding assay dynamics. Its usefulness is highlighted by the experimental determination of the lateral friction coefficient for microtubules on kinesins. In contrast to what is usually assumed, friction is anisotropic, in a similar fashion as hydrodynamic friction. We also exemplify, by considering a microtubule buckling event, that if at least one parameter is known in advance, all other parameters can be determined by analyzing a single time-dependent experiment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Alberts,, Molecular Biology of the Cell (Garland Publishing, New York, 2001)

  2. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, 2001)

  3. I.R. Gibbons, J. Cell Biol. 91, S107 (1981)

    Article  Google Scholar 

  4. H.C. Berg, R.A. Anderson, Nature 245, 380 (1973)

    Article  ADS  Google Scholar 

  5. M.A. Sleigh, J.R. Blake, N. Liron, Am. Rev. Respir. Dis. 137, 726 (1988)

    Article  Google Scholar 

  6. V. Singla, J.F. Reiter, Science 313, 629 (2006)

    Article  ADS  Google Scholar 

  7. F. Pampaloni et al., Proc. Natl. Acad. Sci. U.S.A. 103, 10248 (2006)

    Article  ADS  Google Scholar 

  8. K.M. Taute, F. Pampaloni, E. Frey, E.L. Florin, Phys. Rev. Lett. 100, 028102 (2008)

    Article  ADS  Google Scholar 

  9. C. Heussinger, M. Bathe, E. Frey, Phys. Rev. Lett. 99, 048101 (2007)

    Article  ADS  Google Scholar 

  10. H. Mohrbach, I.M. Kulic, Phys. Rev. Lett. 99, 218102 (2007)

    Article  ADS  Google Scholar 

  11. H. Mohrbach, A. Johner, I.M. Kulic, Phys. Rev. Lett. 105, 268102 (2010)

    Article  ADS  Google Scholar 

  12. L.A. Amos, W.B. Amos, J. Cell. Sci. Suppl. 14, 95101 (1991)

    Google Scholar 

  13. K.J. Böhm, R. Stracke, W. Vater, E. Unger, in Micro- and Nanostructures of Biological Systems, edited by H.J. Hein, G. Bischoff (Shaker Verlag, Aachen, 2001) pp. 153--165

  14. L. Liu, E. Tüzel, J.L. Ross, J. Phys.: Condens. Matter 23, 374104 (2011)

    Google Scholar 

  15. F. Ziebert, H. Mohrbach, I.M. Kulic, Phys. Rev. Lett. 114, 148101 (2015)

    Article  ADS  Google Scholar 

  16. D.K. Fygenson, J.F. Marko, A. Libchaber, Phys. Rev. Lett. 79, 4497 (1997)

    Article  ADS  Google Scholar 

  17. C.P. Brangwynne, G.H. Koenderink, F.C. MacKintosh, D.A. Weitz, Phys. Rev. Lett. 100, 118104 (2008)

    Article  ADS  Google Scholar 

  18. T. Sanchez, D. Welch, D. Nicastro, Z. Dogic, Science 333, 456 (2011)

    Article  ADS  Google Scholar 

  19. F. Gittes, B. Mickey, J. Nettleton, J. Howard, J. Cell Biol. 120, 923 (1993)

    Article  Google Scholar 

  20. P. Venier, A.C. Maggs, M.F. Carlier, D. Pantaloni, J. Biol. Chem. 269, 13353 (1994)

    Google Scholar 

  21. C. Brangwynne et al., Biophys. J. 93, 346 (2007)

    Article  ADS  Google Scholar 

  22. H. Felgner, R. Frank, M. Schliwa, J. Cell Sci. 109, 509 (1996)

    Google Scholar 

  23. A. Kis, et al., Phys. Rev. Lett. 89, 248101 (2002)

    Article  ADS  Google Scholar 

  24. M.G.L. Van den Heuvel, S. Bolhuis, C. Dekker, Nano Lett. 7, 3138 (2007)

    Article  ADS  Google Scholar 

  25. D. Riveline et al., Eur. Biophys. J. 27, 403 (1998)

    Article  Google Scholar 

  26. M.G.L. Van den Heuvel, M.P. de Graaff, C. Dekker, Proc. Natl. Acad. Sci. U.S.A. 105, 7941 (2008)

    Article  ADS  Google Scholar 

  27. L. Bourdieu et al., Phys. Rev. Lett. 75, 176 (1995)

    Article  ADS  Google Scholar 

  28. F. Gittes, E. Meyrhöfer, S. Baek, J. Howard, Biophys. J. 70, 418 (1996)

    Article  Google Scholar 

  29. E. Meyrhöfer, J. Howard, Proc. Natl. Acad. Sci. U.S.A. 92, 574 (1995)

    Article  ADS  Google Scholar 

  30. T.J. Keating, J.G. Peloquin, V.I. Rodionov, D. Momcilovic, G.G. Borisy, Proc. Natl. Acad. Sci. U.S.A. 94, 5078 (1997)

    Article  ADS  Google Scholar 

  31. C.P. Brangwynne et al., J. Cell Biol. 173, 733 (2006)

    Article  Google Scholar 

  32. I.M. Kulic, et al., Proc. Natl. Acad. Sci. U.S.A. 105, 10011 (2008)

    Article  ADS  Google Scholar 

  33. K.C. Leptos, et al., Phys. Rev. Lett. 111, 158101 (2013)

    Article  ADS  Google Scholar 

  34. C.H. Wiggins, D. Riveline, A. Ott, R.E. Goldstein, Biophys. J. 74, 1043 (1998)

    Article  ADS  Google Scholar 

  35. G. Holzwarth, K. Bonin, D.B. Hill, Biophys. J. 82, 1784 (2002)

    Article  Google Scholar 

  36. J. Gagliano, M. Walb, B. Blaker, J.C. Macosko, G. Holzwarth, Eur. Biophys. J. 39, 801 (2010)

    Article  Google Scholar 

  37. X. Xu, A. Nadim, Phys. Fluids 6, 2889 (1994)

    Article  MATH  ADS  Google Scholar 

  38. M.C. Lagomarsino, I. Pagonabarraga, C.P. Lowe, Phys. Rev. Lett. 94, 148104 (2005)

    Article  ADS  Google Scholar 

  39. X. Schlagberger, R.R. Netz, Europhys. Lett. 70, 129 (2005)

    Article  ADS  Google Scholar 

  40. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)

  41. B. Audoly, Y. Pomeau, Elasticity and Geometry (Oxford University Press, Oxford, 2010)

  42. K. Visscher, M. Schnitzer, S. Block, Nature 400, 184 (1999)

    Article  ADS  Google Scholar 

  43. N. Carter, R. Cross R., Nature 435, 308 (2005)

    Article  ADS  Google Scholar 

  44. A. Maloney, L.J. Herskowitz, S.J. Koch, PLoS ONE 6, e19522 (2011)

    Article  ADS  Google Scholar 

  45. Y. Imafuku, Y.Y. Toyoshima, K. Tawada, Biophys. J. 70, 878 (1996)

    Article  ADS  Google Scholar 

  46. S. Ray, E. Meyhöfer, R.A. Milligan, J. Howard, J. Cell Biol. 121, 1083 (1993)

    Article  Google Scholar 

  47. F. Gibbons, J.-F. Chauwin, M. Despósito, J.V. José, Biophys. J. 80, 2515 (2001)

    Article  Google Scholar 

  48. F. Nedelec, D. Foethke, New J. Phys. 9, 427 (2007)

    Article  ADS  Google Scholar 

  49. P. Kraikivski, R. Lipowsky, J. Kierfeld, Phys. Rev. Lett. 96, 258103 (2006)

    Article  ADS  Google Scholar 

  50. X. Li, R. Lipowsky, J. Kierfeld, PLoS ONE 7, e43219 (2012)

    Article  ADS  Google Scholar 

  51. M. Koch, A. Rohrbach, Nat. Photon. 6, 680 (2012)

    Article  ADS  Google Scholar 

  52. A.J. Hunt, F. Gittes, J. Howard, Biophys. J. 67, 766 (1994)

    Article  ADS  Google Scholar 

  53. F. Ziebert, I.S. Aranson, Phys. Rev. E 77, 011918 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falko Ziebert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziebert, F., Mohrbach, H. & Kulić, I. A nonequilibrium power balance relation for analyzing dissipative filament dynamics. Eur. Phys. J. E 38, 129 (2015). https://doi.org/10.1140/epje/i2015-15129-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15129-9

Keywords

Navigation