Skip to main content
Log in

Continuous-time random-walk approach to supercooled liquids: Self-part of the van Hove function and related quantities

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

From equilibrium molecular dynamics (MD) simulations of a bead-spring model for short-chain glass-forming polymer melts we calculate several quantities characterizing the single-monomer dynamics near the (extrapolated) critical temperature \(T_{\rm c}\) of mode-coupling theory: the mean-square displacement g0(t), the non-Gaussian parameter \( \alpha_{2}(t)\) and the self-part of the van Hove function \( G_{\rm s}(r,t)\) which measures the distribution of monomer displacements r in time t. We also determine these quantities from a continuous-time random walk (CTRW) approach. The CTRW is defined in terms of various probability distributions which we know from previous analysis. Utilizing these distributions the CTRW can be solved numerically and compared to the MD data with no adjustable parameter. The MD results reveal the heterogeneous and non-Gaussian single-particle dynamics of the supercooled melt near \( T_{\rm c}\). In the time window of the early \(\alpha\) relaxation \( \alpha_{2}(t)\) is large and \( G_{\rm s}(r,t)\) is broad, reflecting the coexistence of monomer displacements that are much smaller (“slow particles”) and much larger (“fast particles”) than the average at time t, i.e. than \( r = g_{0}(t)^{1/2}\). For large r the tail of \( G_{\rm s}(r,t)\) is compatible with an exponential decay, as found for many glassy systems. The CTRW can reproduce the spatiotemporal dependence of \( G_{\rm s}(r,t)\) at a qualitative to semiquantitative level. However, it is not quantitatively accurate in the studied temperature regime, although the agreement with the MD data improves upon cooling. In the early \(\alpha\) regime we also analyze the MD results for \( G_{\rm s}(r,t)\) via the space-time factorization theorem predicted by ideal mode-coupling theory. While we find the factorization to be well satisfied for small r, both above and below \( T_{\rm c}\) , deviations occur for larger r comprising the tail of \( G_{\rm s}(r,t)\). The CTRW analysis suggests that single-particle “hops” are a contributing factor for these deviations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986)

  2. K.S. Schweizer, Curr. Opin. Colloid Interface Sci. 12, 297 (2007)

    Article  Google Scholar 

  3. C. Donati, S.C. Glotzer, P.H. Poole, W. Kob, S.J. Plimpton, Phys. Rev. E 60, 3107 (1999)

    Article  ADS  Google Scholar 

  4. M. Fuchs, W. Götze, M.R. Mayr, Phys. Rev. E 58, 3384 (1998)

    Article  ADS  Google Scholar 

  5. E. Flenner, G. Szamel, Phys. Rev. E 72, 011205 (2005)

    Article  ADS  Google Scholar 

  6. E. Flenner, G. Szamel, Phys. Rev. E 72, 031508 (2005)

    Article  ADS  Google Scholar 

  7. P. Chaudhuri, L. Berthier, W. Kob, Phys. Rev. Lett. 99, 060604 (2007)

    Article  ADS  Google Scholar 

  8. P. Chaudhuri, Y. Gao, L. Berthier, M. Kilfoil, W. Kob, J. Phys.: Condens. Matter 20, 244126 (2008)

    ADS  Google Scholar 

  9. E.J. Saltzman, K.S. Schweizer, Phys. Rev. E 77, 051504 (2008)

    Article  ADS  Google Scholar 

  10. S.H. Chong, Phys. Rev. E 78, 041501 (2008)

    Article  ADS  Google Scholar 

  11. S.H. Chong, S.H. Chen, F. Mallamace, J. Phys.: Condens. Matter 21, 504101 (2009)

    Google Scholar 

  12. D. Coslovich, A. Ikeda, K. Miyazaki, Phys. Rev. E 93, 042602 (2016)

    Article  ADS  Google Scholar 

  13. W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, Oxford, 2009)

  14. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)

    Article  ADS  Google Scholar 

  15. M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)

    Article  ADS  Google Scholar 

  16. S.C. Glotzer, J. Non-Cryst. Solids 274, 342 (2000)

    Article  ADS  Google Scholar 

  17. L. Berthier, G. Biroli, J.P. Bouchaud, R.L. Jack, in Dynamical Heterogeneities in Glasses, Colloids and Granular Media, edited by L. Berthier, G. Biroli, J.P. Bouchaud, L. Cipelletti, W. van Saarloos (Oxford University Press, Oxford, 2011) pp. 69--109

  18. R. Chandelier, A. Widmer-Cooper, J.K. Kummerfeld, O. Dauchot, G. Biroli, P. Harrowell, D.R. Reichman, Phys. Rev. Lett. 105, 135702 (2010)

    Article  ADS  Google Scholar 

  19. A.S. Keys, L.O. Hedges, J.P. Garrahan, S.C. Glotzer, D. Chandler, Phys. Rev. X 1, 021013 (2011)

    Google Scholar 

  20. J. Helfferich, F. Ziebert, S. Frey, H. Meyer, J. Farago, A. Blumen, J. Baschnagel, Phys. Rev. E 89, 042603 (2014)

    Article  ADS  Google Scholar 

  21. R. Pastore, A. Coniglio, M.P. Ciamarra, Soft Matter 10, 5724 (2014)

    Article  ADS  Google Scholar 

  22. M.P. Ciamarra, R. Pastore, A. Coniglio, Soft Matter 12, 358 (2016)

    Article  ADS  Google Scholar 

  23. M. Warren, J. Rottler, EPL 88, 58005 (2009)

    Article  ADS  Google Scholar 

  24. A. Smessaert, J. Rottler, Phys. Rev. E 88, 022314 (2013)

    Article  ADS  Google Scholar 

  25. K. Vollmayr-Lee, J. Chem. Phys. 121, 4781 (2004)

    Article  ADS  Google Scholar 

  26. K. Vollmayr-Lee, R. Bjorkquist, L.M. Chambers, Phys. Rev. Lett. 110, 017801 (2013)

    Article  ADS  Google Scholar 

  27. N.H. Siboni, D. Raabe, F. Varnik, EPL 111, 48004 (2015)

    Article  ADS  Google Scholar 

  28. E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965)

    Article  ADS  Google Scholar 

  29. J.P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  ADS  Google Scholar 

  31. R.A. Denny, D.R. Reichman, J.P. Bouchaud, Phys. Rev. Lett. 90, 025503 (2003)

    Article  ADS  Google Scholar 

  32. S. Mirigian, K.S. Schweizer, J. Chem. Phys. 140, 194506 (2014)

    Article  ADS  Google Scholar 

  33. S. Mirigian, K.S. Schweizer, J. Chem. Phys. 140, 194507 (2014)

    Article  ADS  Google Scholar 

  34. S.M. Bhattacharyya, B. Bagchi, P.G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 105, 16077 (2008)

    Article  ADS  Google Scholar 

  35. P. Charbonneau, Y. Jin, G. Parisi, F. Zamponi, Proc. Natl. Acad. Sci. U.S.A. 111, 15025 (2014)

    Article  ADS  Google Scholar 

  36. R. Pastore, A. Coniglio, A. de Candia, A. Fierro, M.P. Ciamarra, J. Stat. Mech. Theory Exp. 2016, 054050 (2016)

    Article  Google Scholar 

  37. A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008)

    Google Scholar 

  38. O. Rubner, A. Heuer, Phys. Rev. E 78, 011504 (2008)

    Article  ADS  Google Scholar 

  39. C.F.E. Schroer, A. Heuer, Phys. Rev. Lett. 110, 067801 (2013)

    Article  ADS  Google Scholar 

  40. L.O. Hedges, L. Maibaum, D. Chandler, J.P. Garrahan, J. Chem. Phys. 127, 211101 (2007)

    Article  ADS  Google Scholar 

  41. J. Helfferich, F. Ziebert, S. Frey, H. Meyer, J. Farago, A. Blumen, J. Baschnagel, Phys. Rev. E 89, 042604 (2014)

    Article  ADS  Google Scholar 

  42. M. Warren, J. Rottler, Phys. Rev. Lett. 110, 025501 (2013)

    Article  ADS  Google Scholar 

  43. J. Woh Ahn, B. Falahee, C. Del Picolo, M. Vogel, D. Bingemann, J. Chem. Phys. 138, 12A527 (2013)

    Article  Google Scholar 

  44. J. Helfferich, K. Vollmayr-Lee, F. Ziebert, H. Meyer, J. Baschnagel, EPL 109, 36004 (2015)

    Article  ADS  Google Scholar 

  45. S. Frey, F. Weyßer, H. Meyer, J. Farago, M. Fuchs, J. Baschnagel, Eur. Phys. J. E 38, 11 (2015)

    Article  Google Scholar 

  46. S.C. Plimpton, Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  47. D. Frenkel, B. Smit, Understanding Molecular Simulation, 2nd edition (Academic Press, London, 2002)

  48. S. Melchionna, G. Ciccotti, B. Holian, Mol. Phys. 78, 533 (1993)

    Article  ADS  Google Scholar 

  49. S. Frey, PhD Thesis, Université de Strasbourg, Strasbourg (2012) available from http://www.sudoc.fr/165862653

  50. J. Helfferich, PhD Thesis, University of Freiburg (2015) available from http://nbn-resolving.de/urn:nbn:de:bsz:25-opus-99854

  51. N. Lačević, F.W. Starr, T.B. Schrøder, S.C. Glotzer, J. Chem. Phys. 119, 7372 (2003)

    Article  ADS  Google Scholar 

  52. F.W. Starr, J.F. Douglas, S. Sastry, J. Chem. Phys. 138, 12A541 (2013)

    Article  Google Scholar 

  53. M. Warren, J. Rottler, Phys. Rev. Lett. 104, 205501 (2010)

    Article  ADS  Google Scholar 

  54. H. Miyagawa, Y. Hiwatari, B. Bernu, J.P. Hansen, J. Chem. Phys. 88, 3879 (1988)

    Article  ADS  Google Scholar 

  55. K. Vollmayr-Lee, A. Zippelius, Phys. Rev. E 72, 041507 (2005)

    Article  ADS  Google Scholar 

  56. V.K. Souza, D.J. Wales, J. Chem. Phys. 129, 164507 (2008)

    Article  ADS  Google Scholar 

  57. M. Vogel, Macromolecules 41, 2949 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  58. S. Ashtekar, D. Nguyen, K. Zhao, J. Lyding, W.H. Wang, M. Gruebele, J. Chem. Phys. 137, 141102 (2012)

    Article  ADS  Google Scholar 

  59. S. Ashtekar, J. Lyding, M. Gruebele, Phys. Rev. Lett. 109, 166103 (2012) see also supplementary material

    Article  ADS  Google Scholar 

  60. J.W. Haus, K.W. Kehr, Phys. Rep. 150, 263 (1987)

    Article  ADS  Google Scholar 

  61. J. Klafter, I.M. Sokolov, First Steps in Random Walks -- From Tools to Applications (Oxford University Press, Oxford, 2011)

  62. C. Godrèche, J.M. Luck, J. Stat. Phys. 104, 489 (2001)

    Article  Google Scholar 

  63. J. Helfferich, Eur. Phys. J. E 37, 73 (2014)

    Article  Google Scholar 

  64. J.H.P. Schulz, E. Barkai, R. Metzler, Phys. Rev. X 4, 011028 (2014)

    Google Scholar 

  65. J. Baschnagel, I. Kriuchevskyi, J. Helfferich, C. Ruscher, H. Meyer, O. Benzerara, J. Farago, J. Wittmer, in Polymer Glasses, edited by C.B. Roth (CRC Press, Taylor & Francis Group, 2016) pp. 55--106.

  66. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, Oxford, 2003)

  67. G. Zumofen, J. Klafter, A. Blumen, Models for Anomalous Diffusion, in Disorder Effects on Relaxation Processes: Glasses, Polymers, Proteins, edited by R. Richert, A. Blumen (Springer, Berlin, 1994) p. 251

  68. W. Kob, C. Donati, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 79, 2827 (1997)

    Article  ADS  Google Scholar 

  69. E. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, D.A. Weitz, Science 287, 627 (2000)

    Article  ADS  Google Scholar 

  70. W.K. Kegel, A. van Blaaderen, Science 287, 290 (2000)

    Article  ADS  Google Scholar 

  71. J. Baschnagel, F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005)

    ADS  Google Scholar 

  72. G.F. Signorini, J.L. Barrat, M.L. Klein, J. Chem. Phys. 92, 1294 (1990)

    Article  ADS  Google Scholar 

  73. W. Kob, J. Horbach, K. Binder, The Dynamics of Non-Crystalline Silica: Insight from Molecular Dynamics Computer Simulations, in Slow Dynamics in Complex Systems, Vol. 469 (AIP, Woodbury, 1999) pp. 441--451

  74. T. Gleim, W. Kob, Eur. Phys. J. B 13, 83 (2000)

    Article  ADS  Google Scholar 

  75. F. Weysser, A.M. Puertas, M. Fuchs, T. Voigtmann, Phys. Rev. E 82, 011504 (2010)

    Article  ADS  Google Scholar 

  76. Y. Khairy, F. Alvarez, A. Arbe, J. Colmenero, Phys. Rev. E 88, 042302 (2013)

    Article  ADS  Google Scholar 

  77. M. Aichele, J. Baschnagel, Eur. Phys. J. E 5, 229 (2001)

    Article  Google Scholar 

  78. T. Rizzo, T. Voigtmann, EPL 111, 56008 (2015)

    Article  ADS  Google Scholar 

  79. A. Cavagna, Phys. Rep. 476, 51 (2009)

    Article  ADS  Google Scholar 

  80. W. Götze, L. Sjögren, Rep. Prog. Phys. 55, 241 (1992)

    Article  Google Scholar 

  81. S.M. Bhattacharyya, B. Bagchi, P.G. Wolynes, Phys. Rev. E 72, 031509 (2005)

    Article  ADS  Google Scholar 

  82. L.M.C. Janssen, D. Reichman, Phys. Rev. Lett. 115, 205701 (2015)

    Article  ADS  Google Scholar 

  83. L.M.C. Janssen, P. Mayer, D. Reichman, J. Stat. Mech. 2016, 054049 (2016)

    Article  Google Scholar 

  84. L. Berthier, D. Chandler, J.P. Garrahan, Europhys. Lett. 69, 320 (2005)

    Article  ADS  Google Scholar 

  85. W. Götze, L. Sjögren, Transp. Theory Stat. Phys. 24, 801 (1995)

    Article  Google Scholar 

  86. J. Colmenero, A. Narros, F. Alvarez, A. Arbe, A.J. Moreno, J. Phys.: Condens. Matter 19, 205127 (2007)

    ADS  Google Scholar 

  87. R. Pastore, A. Coniglio, M.P. Ciamarra, Soft Matter 11, 7214 (2015)

    Article  ADS  Google Scholar 

  88. G. Biroli, J.P. Garrahan, J. Chem. Phys. 138, 12A301 (2013)

    Article  Google Scholar 

  89. B.A. Pazmiño Betancourt, J.F. Douglas, F.W. Starr, J. Chem. Phys. 140, 204509 (2014)

    Article  ADS  Google Scholar 

  90. Y. Gebremichael, M. Vogel, S.C. Glotzer, J. Chem. Phys. 120, 4415 (2004)

    Article  ADS  Google Scholar 

  91. J. Colmenero, J. Phys.: Condens. Matter 27, 103101 (2015)

    ADS  Google Scholar 

  92. E.W. Montroll, M.F. Shlesinger, On the Wonderful World of Random Walks, in Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, edited by J.L. Lebowitz, E.W. Montroll (Elsevier Science Publishers BV, 1984) pp. 1--121

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Baschnagel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helfferich, J., Brisch, J., Meyer, H. et al. Continuous-time random-walk approach to supercooled liquids: Self-part of the van Hove function and related quantities. Eur. Phys. J. E 41, 71 (2018). https://doi.org/10.1140/epje/i2018-11680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11680-1

Keywords

Navigation