Skip to main content
Log in

Translocation of polyampholytes and intrinsically disordered proteins

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Polyampholytes are polymers carrying electrical charges of both signs along their backbone. We consider synthetic polyampholytes with a quenched random charge sequence and intrinsically disordered proteins, which have a well-defined charge sequence and behave like polyampholytes in the denaturated state. We study their translocation driven by an electric field through a pore. The role of disorder along the charge sequence of synthetic polyampholytes is analyzed. We show how disorder slows down the translocation dynamics. For intrinsically disordered proteins, the translocation vs. rejection rates by the pore depends on which end is engaged in the translocation channel. We discuss the rejection time, the blockade time distributions and the translocation speed for the charge sequence of two specific intrinsically disordered proteins differing in length and structure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V.N. Uversky, Int. J. Biochem. Cell Biol. 43, 1090 (2011)

    Article  Google Scholar 

  2. S. Müller-Spät, A. Soranno, V. Hirschfeld, H. Hofmann, S. Rüegger, Proc. Natl. Acad. Sci. U.S.A. 107, 14609 (2010)

    Article  ADS  Google Scholar 

  3. P.G. Higgs, J.-F. Joanny, J. Chem. Phys. 94, 1543 (1991)

    Article  ADS  Google Scholar 

  4. M. Brucale, B. Schuler, B. Samori, Chem. Rev. 114, 3281 (2014)

    Article  Google Scholar 

  5. C. Baran, G.S.T. Smith, V.V. Bamm, G. Harauz, J.S. Lee, Biochem. Biophys. Res. Commun. 391, 224 (2010)

    Article  Google Scholar 

  6. D. Japrung, J. Dogan, K.J. Freedman, A. Nadzeyka, S. Bauerdick, T. Albrecht, M.J. Kim, P. Jemth, J.B. Edel, Anal. Chem. 85, 2449 (2013)

    Article  Google Scholar 

  7. J.-F. Lutz, M. Ouchi, D.R. Liu, M. Sawamoto, Science 341, 628 (2013)

    Article  Google Scholar 

  8. J.-F. Lutz, Macromol. Rapid Commun. 38, 1700582 (2017)

    Article  Google Scholar 

  9. S. Moldakarimov, A. Johner, J.-F. Joanny, Eur. Phys. J. E 10, 303 (2003)

    Article  Google Scholar 

  10. J. Baschnagel, H. Meyer, J. Wittmer, I. Kulić, H. Mohrbach, F. Ziebert, G.-M. Nam, N.-K. Lee, A. Johner, Polymers 8, 286 (2016)

    Article  Google Scholar 

  11. A.V. Dobrynin, M. Rubinstein, S. Obukhov, Macromolecules 29, 398 (1996)

    Article  ADS  Google Scholar 

  12. Y. Kantor, M. Kardar, D. Ertas, Physica A 249, 301 (1998)

    Article  ADS  Google Scholar 

  13. V. Yamakov, A. Milchev, H.J. Limbach, B. Dünweg, R. Everaers, Phys. Rev. Lett. 85, 4305 (2000)

    Article  ADS  Google Scholar 

  14. A.V. Dobrynin, R.H. Colby, M. Rubinstein, J. Polym. Sci. Polym. Phys. 42, 3513 (2004)

    Article  ADS  Google Scholar 

  15. G. Oukhaled, J. Mathé, A.-L. Biance, L. Bacri, J.-M. Betton, D. Lairez, J. Pelta, L. Auvray, Phys. Rev. Lett. 98, 158101 (2007)

    Article  ADS  Google Scholar 

  16. D. Lairez, M.-C. Clochard, J.-E. Wegrowe, Sci. Rep. 6, 38966 (2016)

    Article  ADS  Google Scholar 

  17. L. Payet, M. Martinho, C. Merstorf, M. Pastoriza-Gallego, J. Pelta, V. Viasnoff, L. Auvray, M. Muthukumar, J. Mathé, Biophys. J. 109, 1600 (2015)

    Article  ADS  Google Scholar 

  18. M. Muthukumar, Polymer Translocation (CRC Press 2011) ISBN 9781420075168

  19. D. Lubensky, D. Nelson, Biophys. J. 77, 1824 (1999)

    Article  ADS  Google Scholar 

  20. P. Rawghanian, A.Yu. Grosberg, Phys. Rev. E 87, 042722 (2013)

    Article  ADS  Google Scholar 

  21. Ya.G. Sinai, Theory Probab. Appl. 27, 256 (1982)

    Article  Google Scholar 

  22. A. Comtet, D.S. Dean, J. Phys. A: Math. Gen. 31, 8595 (1998)

    Article  ADS  Google Scholar 

  23. H. Kesten, Physica A 138, 299 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  24. F. Delyon, J.-F. Luciani, J. Stat. Phys. 54, 1065 (1989)

    Article  ADS  Google Scholar 

  25. J.-P. Bouchaud, A. Comtet, A. Georges, P. Le Dousal, Ann. Phys. 201, 285 (1990)

    Article  ADS  Google Scholar 

  26. C. Aslangul, N. Pottier, D. Saint-James, J. Phys. (Paris) 50, 899 (1989)

    Article  Google Scholar 

  27. C. Aslangul, P. Chvosta, N. Pottier, D. Saint-James, Europhys. Lett. 19, 347 (1992)

    Article  ADS  Google Scholar 

  28. B. Derrida, J. Stat. Phys. 31, 433 (1983)

    Article  ADS  Google Scholar 

  29. S. Mirigan, Y. Wang, M. Muthukumar, J. Chem. Phys. 137, 064904 (2012)

    Article  ADS  Google Scholar 

  30. J.L. Barrat, J.F. Joanny, Advances in Chemical Physics, Vol. 94, (John Wiley and Sons, 1996) pp. 1--66

  31. D. Long, A.V. Dobrynin, M. Rubinstein, A. Ajdari, J. Chem. Phys. 108, 1234 (1998)

    Article  ADS  Google Scholar 

  32. Y. Kafri, D.K. Lubensky, D.R. Nelson, Biophys. J. 86, 3373 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Johner.

Additional information

We would like to dedicate this work to Loïc Auvray. He was a good friend of both of us who was working on polymer translocation. We admired his enthusiasm for science and his way of approaching physics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johner, A., Joanny, J.F. Translocation of polyampholytes and intrinsically disordered proteins. Eur. Phys. J. E 41, 78 (2018). https://doi.org/10.1140/epje/i2018-11686-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11686-7

Keywords

Navigation