Skip to main content
Log in

The Daoud and Cotton blob model and the interaction of star-shaped polymers

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Since it was first proposed in 1982, the Daoud and Cotton (DC) model for star-shaped polymers was intensively used also for self-assembled copolymers and small colloids grafted with long polymers. We try to clarify the position of the DC model and focus on the star partition function which plays a central role in self-assembly and gives access to the star-star interaction. While the predicted star-star interaction agrees with scattering data by Likos et al. (Phys. Rev. Lett. 80, 4450 (1998)), an extensive simulation by Hsu et al. (Macromolecules, 37, 4658 (2004)) does not recover the prediction for the partition function. We try to reconcile this seemingly conflicting results. We discuss star-star interactions, star free energy in \( \theta\) -solvents, mixing of A/B branches in copolymer stars, within or beyond the Daoud and Cotton blob model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Daoud, J.P. Cotton, J. Phys. (Paris) 43, 531 (1982)

    Article  Google Scholar 

  2. T.A. Witten, P.A. Pincus, Macromolecules 19, 2509 (1986)

    Article  ADS  Google Scholar 

  3. C.N. Likos, H. Löwen, M. Watzlawek, B. Abbas, O. Jucknischke, J. Allgaier, D. Richter, Phys. Rev. Lett. 80, 4450 (1998)

    Article  ADS  Google Scholar 

  4. M. Benhamou, M. Himmi, H. Kaidi, J. Mol. Liq. 230, 337 (2017)

    Article  Google Scholar 

  5. G. Grest, L. Fetters, J. Huang, D. Richter, Adv. Chem. Phys. 94, 67 (1996)

    Google Scholar 

  6. R. Whitfield, A. Anastasaki, N.P. Truong, P. Wilson, K. Kempe, J.A. Burns, T.P. Davis, D.M. Haddleton, Macromolecules 49, 8914 (2016)

    Article  ADS  Google Scholar 

  7. X. Lang, W.R. Lenart, J.E.P. Sun, B. Hammouda, M.J.A. Hore, Macromolecules 50, 2145 (2017)

    Article  ADS  Google Scholar 

  8. R. Everaers, A.Y. Grosberg, M. Rubinstein, A. Rosa, Soft Matter 13, 1223 (2017)

    Article  ADS  Google Scholar 

  9. R. Hu, D.T. Wu, Phys. Rev. E 95, 042502 (2017)

    Article  ADS  Google Scholar 

  10. I.O. Lebedeva, E.B. Zhulina, F.A.M. Leermakers, O.V. Borisov, Langmuir 33, 1315 (2017)

    Article  Google Scholar 

  11. M. Wengenmayr, R. Dockhorn, J.U. Sommer, Macromolecules 49, 9215 (2016)

    Article  ADS  Google Scholar 

  12. P. Hebbeker, A.A. Steinschulte, S. Schneider, J. Okuda, M. Moeller, F.A. Plamper, S. Schneider, Macromolecules 49, 8748 (2016)

    Article  ADS  Google Scholar 

  13. O. Rud, T. Richter, O. Borisov, C. Holm, P. Kosovan, Soft Matter 13, 3264 (2017)

    Article  ADS  Google Scholar 

  14. H. Zhang, W. Wang, S. Mallapragada, A. Travesset, D. Vaknin, Nanoscale 9, 164 (2017)

    Article  Google Scholar 

  15. X.W. Gu, X. Ye, D.M. Koshy, S. Vachhani, P. Hosemann, A.P. Alivisatos, Proc. Natl. Acad. Sci. U.S.A. 114, 2836 (2017)

    Article  ADS  Google Scholar 

  16. T. Krentz, M.M. Khani, M. Bell, B.C. Benicewicz, J.K. Nelson, S. Zhao, H. Hillborg, L.S. Schadler, J. Appl. Polym. Sci. 134, 44347 (2017)

    Article  Google Scholar 

  17. V.R. Ahuja, J. van der Gucht, W.J. Briels, J. Chem. Phys. 145, 194903 (2016)

    Article  ADS  Google Scholar 

  18. J. Irianto, Y. Xia, C.R. Pfeifer, R.A. Greenberg, D.E. Discher, Biophys. J. 112, 446 (2017)

    Article  ADS  Google Scholar 

  19. N. Giamblanco, G. Marletta, A. Graillot, N. Bia, C. Loubat, J.F. Berret, ACS OMEGA 2, 1309 (2017)

    Article  Google Scholar 

  20. H.P. Hsu, W. Nadler, P. Grassberger, Macromolecules 37, 4658 (2004)

    Article  ADS  Google Scholar 

  21. J. des Cloizeaux, G. Jannink, Polymers in Solution (Oxford University Press, Oxford, 1990)

  22. B. Duplantier, J. Stat. Phys. 54, 581 (1989)

    Article  ADS  Google Scholar 

  23. L. Schäfer, C. von Ferber, U. Lehr, B. Duplantier, Nucl. Phys. B 374, 473 (1992)

    Article  ADS  Google Scholar 

  24. V. Schulte-Frohlinde, Y. Holovatch, C. von Ferber, A. Blumen, Phys. Lett. A 328, 335 (2004)

    Article  ADS  Google Scholar 

  25. N.K. Lee, C. Abrams, J. Chem. Phys. 121, 7484 (2004)

    Article  ADS  Google Scholar 

  26. C. von Ferber, A. Jusufi, C.N. Likos, H. Löwen, M. Watzlawek, Eur. Phys. J. E 2, 311 (2000)

    Article  Google Scholar 

  27. A.N. Semenov, J.F. Joanny, A.R. Khokhlov, Macromolecules 28, 1066 (1995)

    Article  ADS  Google Scholar 

  28. S.T. Milner, T.A. Witten, M.E. Cates, Macromolecules 21, 2610 (1988)

    Article  ADS  Google Scholar 

  29. A. Johner, EPL 96, 46004 (2011)

    Article  ADS  Google Scholar 

  30. A.N. Semenov, Sov. Phys. JETP 61, 733 (1985)

    Google Scholar 

  31. Y.B. Zhulina, V.A. Pryamitsin, O.V. Borisov, Polym. Sci. U.S.S.R. 31, 205 (1989)

    Article  Google Scholar 

  32. S.T. Milner, T.A. Witten, M.E. Cates, Europhys. Lett. 5, 413 (1988)

    Article  ADS  Google Scholar 

  33. R.C. Ball, J.F. Marko, S.T. Milner, T.A. Witten, Macromolecules 24, 693 (1991)

    Article  ADS  Google Scholar 

  34. J.F. Joanny, L. Leibler, R. Ball, J. Chem. Phys. 81, 4640 (1984)

    Article  ADS  Google Scholar 

  35. C. von Ferber, Y. Holovatch, Phys. Rev. E 56, 6370 (1997)

    Article  ADS  Google Scholar 

  36. V. Blavatska, C. von Ferber, Y. Holovatch, Condens. Matter Phys. 15, 33603 (2012)

    Article  Google Scholar 

  37. A. Halperin, J.F. Joanny, J. Phys. II 1, 623 (1991)

    Google Scholar 

  38. A. Johner, J.F. Joanny, J. Phys. II 6, 511 (1996)

    Google Scholar 

  39. G. Volet, L. Auvray, C. Amiel, J. Phys. Chem. B 113, 13536 (2009)

    Article  Google Scholar 

  40. G.M.E. Pozza, S. Crotty, M. Rawiso, U.S. Schubert, P.J. Lutz, J. Phys. Chem. B 119, 1669 (2015)

    Article  Google Scholar 

  41. C.M. Marques, D. Izzo, T. Charitat, E. Mendes, Eur. Phys. J. B 3, 353 (1998)

    Article  ADS  Google Scholar 

  42. L. Auvray, private communication. About at the same time as ref. marques1998 was worked out, Lo\"ıc Auvray circulated a calculation of the structure factor. It is in particular cited in ref. lutz2015

  43. A. Johner, H. Benoit, J.F. Joanny, Makromol. Chem. Theory Simul. 4, 45 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Johner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johner, A., Lee, NK. The Daoud and Cotton blob model and the interaction of star-shaped polymers. Eur. Phys. J. E 41, 88 (2018). https://doi.org/10.1140/epje/i2018-11698-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11698-3

Keywords

Navigation